
Corda: A distributed ledger

Mike Hearn

November 29, 2016

Version 0.5

Abstract

A decentralised database with minimal trust between nodes would al-
low for the creation of a global ledger. Such a ledger would have many
useful applications in finance, trade, supply chain tracking and more. We
present Corda, a decentralised global database, and describe in detail how
it achieves the goal of providing a platform for decentralised app develop-
ment. We elaborate on the high level description provided in the paper
Corda: An introduction 1 and provide a detailed technical discussion.

This document describes the Corda design as intended. The reference implementation does
not implement everything described within at this time.

1

Contents

1 Introduction 4

2 Overview 6

3 The peer to peer network 7
3.1 Network overview . 7
3.2 Identity and the permissioning service 7
3.3 The network map . 8
3.4 Message delivery . 8
3.5 Serialization, sessioning, deduplication and signing 9

4 Flow framework 10
4.1 Overview . 10
4.2 Data visibility and dependency resolution 12

5 Data model 13
5.1 Transaction structure . 13
5.2 Composite keys . 15
5.3 Timestamps . 16
5.4 Attachments and contract bytecodes 17
5.5 Hard forks, specifications and dispute resolution 19
5.6 Identity lookups . 20
5.7 Oracles and tear-offs . 21
5.8 Encumbrances . 23
5.9 Contract constraints . 24
5.10 Event scheduling . 25

6 Common financial constructs 25
6.1 Assets . 25
6.2 Obligations . 26
6.3 Market infrastructure . 28

7 Notaries and consensus 29
7.1 Comparison to Nakamoto block chains 29
7.2 Algorithmic agility . 30
7.3 Validating and non-validating notaries 31
7.4 Merging networks . 32
7.5 Guaranteed data distribution . 33

8 The vault 34
8.1 Direct SQL access . 35
8.2 Key randomisation . 36

9 Domain specific languages 37
9.1 Clauses . 37

2

9.2 Combinator libraries . 37
9.3 Formally verifiable languages . 38
9.4 Projectional editing . 39

10 Secure signing devices 39
10.1 Background . 39
10.2 Confusion attacks . 40
10.3 Transaction summaries . 41
10.4 Identity substitution . 42
10.5 Multi-lingual support . 42

11 Client RPC and reactive collections 42

12 Data distribution groups 43

13 Deterministic JVM 46

14 Scalability 48

15 Privacy 51

16 Conclusion 53

17 Acknowledgements 53

Bibliography 54

3

1 Introduction

In many industries significant effort is needed to keep organisation specific
databases in sync with each other. In the financial sector the effort of keeping
different databases synchronised, reconciling them to ensure they actually are
synchronised and resolving the ‘breaks’ that occur when they are not represents
a significant fraction of the total work a bank actually does!

Why not just use a shared relational database? This would certainly solve a
lot of problems using only existing technology, but it would also raise more
questions than answers:

• Who would run this database? Where would we find a sufficient supply
of angels to own it?

• In which countries would it be hosted? What would stop that country
abusing the mountain of sensitive information it would have?

• What if it were hacked?

• Can you actually scale a relational database to fit the entire financial
system?

• What happens if The Financial System™ needs to go down for mainte-
nance?

• What kind of nightmarish IT bureaucracy would guard changes to the
database schemas?

• How would you manage access control?

We can imagine many other questions. A decentralised database attempts to
answer them.

In this paper we differentiate between a decentralised database and a distributed
database. A distributed database like BigTable2 scales to large datasets and
transaction volumes by spreading the data over many computers. However it
is assumed that the computers in question are all run by a single homogenous
organisation and that the nodes comprising the database all trust each other
not to misbehave or leak data. In a decentralised database, such as the one
underpinning Bitcoin3, the nodes make much weaker trust assumptions and
actively cross-check each other’s work. Such databases trade performance and
usability for security and global acceptance.

Corda is a decentralised database platform with the following novel features:

• New transaction types can be defined using JVM4 bytecode.

• Transactions may execute in parallel, on different nodes, without either
node being aware of the other’s transactions.

4

• Nodes are arranged in an authenticated peer to peer network. All com-
munication is direct.

• There is no block chain3. Transaction races are deconflicted using plug-
gable notaries. A single Corda network may contain multiple notaries
that provide their guarantees using a variety of different algorithms. Thus
Corda is not tied to any particular consensus algorithm. (§7)

• Data is shared on a need-to-know basis. Nodes provide the dependency
graph of a transaction they are sending to another node on demand, but
there is no global broadcast of all transactions.

• Bytecode-to-bytecode transpilation is used to allow complex, multi-step
transaction building protocols called flows to be modelled as blocking
code. The code is transformed into an asynchronous state machine, with
checkpoints written to the node’s backing database when messages are
sent and received. A node may potentially have millions of flows active
at once and they may last days, across node restarts and even upgrades.
Flows expose progress information to node administrators and users and
may interact with people as well as other nodes. A Flow library is provided
to enable developers to re-use common Flow types such as notarisation,
membership broadcast and so on.

• The data model allows for arbitrary object graphs to be stored in the
ledger. These graphs are called states and are the atomic unit of data.

• Nodes are backed by a relational database and data placed in the ledger
can be queried using SQL as well as joined with private tables, thanks to
slots in the state definitions that are reserved for join keys.

• The platform provides a rich type system for the representation of things
like dates, currencies, legal entities and financial entities such as cash,
issuance, deals and so on.

• States can declare a relational mapping and can be queried using SQL.

• Integration with existing systems is considered from the start. The net-
work can support rapid bulk data imports from other database systems
without placing load on the network. Events on the ledger are exposed
via an embedded JMS compatible message broker.

• States can declare scheduled events. For example a bond state may declare
an automatic transition to an “in default” state if it is not repaid in time.

Corda follows a general philosophy of reusing existing proven software systems
and infrastructure where possible. Comparisons with Bitcoin and Ethereum will
be provided throughout.

5

2 Overview

Corda is a platform for the writing of “CorDapps”: applications that extend the
global database with new capabilities. Such apps define new data types, new
inter-node protocol flows and the “smart contracts” that determine allowed
changes.

What is a smart contract? That depends on the model of computation we are
talking about. There are two competing computational models used in decen-
tralised databases: the virtual computer model and the UTXO model. The
virtual computer model is used by Ethereum5. It models the database as the
in-memory state of a global computer with a single thread of execution deter-
mined by the block chain. In the UTXO model, as used in Bitcoin, the database
is a set of immutable rows keyed by (hash:output index). Transactions de-
fine outputs that append new rows and inputs which consume existing rows.
The term “smart contract” has a different meaning in each model. A deeper
discussion of the tradeoffs and terminology in the different approaches can be
found in the Corda introductory paper1.

We use the UTXO model and as a result our transactions are structurally sim-
ilar to Bitcoin transactions: they have inputs, outputs and signatures. Unlike
Bitcoin, Corda database rows can contain arbitrary data, not just a value field.
Because the data consumed and added by transactions is not necessarily a set of
key/value pairs, we don’t talk about rows but rather states. Like Bitcoin, Corda
states are associated with bytecode programs that must accept a transaction for
it to be valid, but unlike Bitcoin, a transaction must satisfy the programs for
both the input and output states at once. Issuance transactions may append
new states to the database without consuming any existing states but unlike in
Bitcoin these transactions are not special and may be created at any time, by
anyone.

In contrast to both Bitcoin and Ethereum, Corda does not order transactions
using a block chain and by implication does not use miners or proof-of-work.
Instead each state points to a notary, which is a service that guarantees it will
sign a transaction only if all the input states are un-consumed. A transaction
is not allowed to consume states controlled by multiple notaries and thus there
is never any need for two-phase commit between notaries. If a combination of
states would cross notaries then a special transaction type is used to move them
onto a single notary first. See §7 for more information.

The Corda transaction format has various other features which are described in
later sections.

6

3 The peer to peer network

3.1 Network overview

A Corda network consists of the following components:

• Nodes, communicating using AMQP/1.0 over TLS. Nodes use a relational
database for data storage.

• A permissioning service that automates the process of provisioning TLS
certificates.

• A network map service that publishes information about nodes on the
network.

• One or more notary services. A notary may itself be distributed over
multiple nodes.

• Zero or more oracle services. An oracle is a well known service that signs
transactions if they state a fact and that fact is considered to be true.
They may also optionally also provide the facts. This is how the ledger
can be connected to the real world, despite being fully deterministic.

A purely in-memory implementation of the messaging subsystem is provided
which can inject simulated latency between nodes and visualise communica-
tions between them. This can be useful for debugging, testing and educational
purposes.

Oracles and notaries are covered in later sections.

3.2 Identity and the permissioning service

Unlike Bitcoin and Ethereum, Corda is designed for semi-private networks in
which admission requires obtaining an identity signed by a root authority. This
assumption is pervasive – the flow API provides messaging in terms of identities,
with routing and delivery to underlying nodes being handled automatically.
There is no global broadcast at any point.

This ‘identity’ does not have to be a legal or true identity. In the same way that
an email address is a globally unique pseudonym that is ultimately rooted by
the top of the DNS hierarchy, so too can a Corda network work with arbitrary
self-selected usernames. The permissioning service can implement any policy
it likes as long as the identities it signs are globally unique. Thus an entirely
anonymous Corda network is possible if a suitable IP obfuscation system like
Tor6 is also used.

Whilst simple string identities are likely sufficient for some networks, the fi-
nancial industry typically requires some level of know your customer checking,
and differentiation between different legal entities, branches and desks that may

7

share the same brand name. Corda reuses the standard PKIX infrastructure for
connecting public keys to identities and thus names are actually X.500 names.
When a single string is sufficient the common name field can be used alone,
similar to the web PKI. In more complex deployments the additional structure
X.500 provides may be useful to differentiate between entities with the same
name. For example there are at least five different companies called American
Bank and in the past there may have been more than 40 independent banks
with that name.

More complex notions of identity that may attest to many time-varying at-
tributes are not handled at this layer of the system: the base identity is always
just an X.500 name. Note that even though messaging is always identified,
transactions themselves may still contain anonymous public keys.

3.3 The network map

Every network requires a network map service, which may itself be composed
of multiple cooperating nodes. This is similar to Tor’s concept of directory
authorities. The network map publishes the IP addresses through which every
node on the network can be reached, along with the identity certificates of those
nodes and the services they provide. On receiving a connection, nodes check
that the connecting node is in the network map.

The network map abstracts the underlying IP addresses of the nodes from more
useful business concepts like identities and services. Each participant on the
network, called a party, publishes one or more IP addresses in the network map.
Equivalent domain names may be helpful for debugging but are not required.
User interfaces and APIs always work in terms of identities – there is thus no
equivalent to Bitcoin’s notion of an address (hashed public key), and user-facing
applications rely on auto-completion and search rather than QRcodes to identify
a logical recipient.

It is possible to subscribe to network map changes and registering with the map
is the first thing a node does at startup. Nodes may optionally advertise their
nearest city for load balancing and network visualisation purposes.

The map is a document that may be cached and distributed throughout the
network. The map is therefore not required to be highly available: if the map
service becomes unreachable new nodes may not join the network and existing
nodes may not change their advertised service set, but otherwise things continue
as normal.

3.4 Message delivery

The network is structurally similar to the email network. Nodes are expected to
be long lived but may depart temporarily due to crashes, connectivity interrup-

8

tions or maintenance. Messages are written to disk and delivery is retried until
the remote node has acknowledged a message, at which point it is expected to
have either reliably stored the message or processed it completely. Connections
between nodes are built and torn down as needed: there is no assumption of
constant connectivity. An ideal network would be entirely flat with high quality
connectivity between all nodes, but Corda recognises that this is not always
compatible with common network setups and thus the message routing compo-
nent of a node can be separated from the rest and run outside the firewall. Being
outside the firewall or in the firewall’s ‘de-militarised zone’ (DMZ) is required to
ensure that nodes can connect to anyone on the network, and be connected to in
turn. In this way a node can be split into multiple sub-services that do not have
duplex connectivity yet can still take part in the network as first class citizens.
Additionally, a single node may have multiple advertised IP addresses.

The reference implementation provides this functionality using the Apache Artemis
message broker, through which it obtains journalling, load balancing, flow con-
trol, high availability clustering, streaming of messages too large to fit in RAM
and many other useful features. The network uses the AMQP/1.0 7 protocol
which is a widely implemented binary messaging standard, combined with TLS
to secure messages in transit and authenticate the endpoints.

3.5 Serialization, sessioning, deduplication and signing

All messages are encoded using a compact binary format. Each message has
a UUID set in an AMQP header which is used as a deduplication key, thus
accidentally redelivered messages will be ignored.

Messages may also have an associated organising 64-bit session ID. Note that
this is distinct from the AMQP notion of a session. Sessions can be long lived
and persist across node restarts and network outages. They exist in order to
group messages that are part of a flow, described in more detail below.

Messages that are successfully processed by a node generate a signed acknowl-
edgement message called a ‘receipt’. Note that this is distinct from the unsigned
acknowledgements that live at the AMQP level and which simply flag that a
message was successfully downloaded over the wire. A receipt may be generated
some time after the message is processed in the case where acknowledgements
are being batched to amortise signing overhead, and the receipt identifies the
message by the hash of its content. The purpose of the receipts is to give a node
undeniable evidence that a counterparty received a notification that would stand
up later in a dispute mediation process. Corda does not attempt to support de-
niable messaging.

9

4 Flow framework

4.1 Overview

It is common in decentralised ledger systems for complex multi-party proto-
cols to be needed. The Bitcoin payment channel protocol8 involves two parties
putting money into a multi-signature pot, then iterating with your counterparty
a shared transaction that spends that pot, with extra transactions used for the
case where one party or the other fails to terminate properly. Such protocols
typically involve reliable private message passing, checkpointing to disk, sign-
ing of transactions, interaction with the p2p network, reporting progress to the
user, maintaining a complex state machine with timeouts and error cases, and
possibly interaction with internal systems on either side. All this can become
quite involved. The implementation of Bitcoin payment channels in the bit-
coinj library is approximately 9000 lines of Java, very little of which involves
cryptography.

As another example, the core Bitcoin protocol only allows you to append trans-
actions to the ledger. Transmitting other information that might be useful such
as a text message, refund address, identity information and so on is not sup-
ported and must be handled in some other way – typically by wrapping the raw
ledger transaction bytes in a larger message that adds the desired metadata and
giving responsibility for broadcasting the embedded transaction to the recipient,
as in Bitcoin’s BIP 709.

In Corda transaction data is not globally broadcast. Instead it is transmitted to
the relevant parties only when they need to see it. Moreover even quite simple
use cases – like sending cash – may involve a multi-step negotiation between
counterparties and the involvement of a third party such as a notary. Additional
information that isn’t put into the ledger is considered essential, as opposed to
nice-to-have. Thus unlike traditional block chain systems in which the primary
form of communication is global broadcast, in Corda all communication takes
the form of small multi-party sub-protocols called flows.

The flow framework presents a programming model that looks to the developer
as if they have the ability to run millions of long lived threads which can survive
node restarts, and even node upgrades. APIs are provided to send and receive
object graphs to and from other identities on the network, embed sub-flows,
and report progress to observers. In this way business logic can be expressed at
a very high level, with the details of making it reliable and efficient abstracted
away. This is achieved with the following components.

Just-in-time state machine compiler. Code that is written in a blocking
manner typically cannot be stopped and transparently restarted later. The first
time a flow’s call method is invoked a bytecode-to-bytecode transformation
occurs that rewrites the classes into a form that implements a resumable state

10

machine. These state machines are sometimes called fibers or coroutines, and
the transformation engine Corda uses (Quasar) is capable of rewriting code
arbitrarily deep in the stack on the fly. The developer may thus break his or
her logic into multiple methods and classes, use loops, and generally structure
their program as if it were executing in a single blocking thread. There’s only a
small list of things they should not do: sleeping, directly accessing the network
APIs, or doing other tasks that might block outside of the framework.

Transparent checkpointing. When a flow wishes to wait for a message from
another party (or input from a human being) the underlying stack frames are
suspended onto the heap, then crawled and serialized into the node’s underlying
relational database using an object serialization framework. The written objects
are prefixed with small schema definitions that allow some measure of portability
across changes to the layout of objects, although portability across changes to
the stack layout is left for future work. Flows are resumed and suspended on
demand, meaning it is feasible to have far more flows active at once than would
fit in memory. The checkpointing process is atomic with changes to local storage
and acknowledgement of network messages.

Identity to IP address mapping. Flows are written in terms of identities.
The framework takes care of routing messages to the right IP address for a given
identity, following movements that may take place whilst the flow is active and
handling load balancing for multi-homed parties as appropriate.

A library of subflows. Flows can invoke sub-flows, and a library of flows is
provided to automate common tasks like notarising a transaction or atomically
swapping ownership of two assets.

Progress reporting. Flows can provide a progress tracker that indicates
which step they are up to. Steps can have human-meaningful labels, along
with other tagged data like a progress bar. Progress trackers are hierarchical
and steps can have sub-trackers for invoked sub-flows.

Flow hospital. Flows can pause if they throw exceptions or explicitly request
human assistance. A flow that has stopped appears in the flow hospital where
the node’s administrator may decide to kill the flow or provide it with a solution.
The ability to request manual solutions is useful for cases where the other side
isn’t sure why you are contacting them, for example, the specified reason for
sending a payment is not recognised, or when the asset used for a payment is
not considered acceptable.

11

Flows are named using reverse DNS notation and several are defined by the
base protocol. Note that the framework is not required to implement the wire
protocols, it is just a development aid.

4.2 Data visibility and dependency resolution

When a transaction is presented to a node as part of a flow it may need to be
checked. Simply sending you a message saying that I am paying you £1000 is
only useful if you are sure I own the money I’m using to pay you. Checking
transaction validity is the responsibility of the ResolveTransactions flow. This
flow performs a breadth-first search over the transaction graph, downloading any
missing transactions into local storage and validating them. The search bottoms
out at the issuance transactions. A transaction is not considered valid if any of
its transitive dependencies are invalid.

It is required that a node be able to present the entire dependency graph for a
transaction it is asking another node to accept. Thus there is never any con-
fusion about where to find transaction data. Because transactions are always
communicated inside a flow, and flows embed the resolution flow, the neces-
sary dependencies are fetched and checked automatically from the correct peer.
Transactions propagate around the network lazily and there is no need for dis-
tributed hash tables.

This approach has several consequences. One is that transactions that move
highly liquid assets like cash may end up becoming a part of a very long chain
of transactions. The act of resolving the tip of such a graph can involve many
round-trips and thus take some time to fully complete. How quickly a Corda
network can send payments is thus difficult to characterise: it depends heavily on
usage and distance between nodes. Whilst nodes could pre-push transactions in
anticipation of them being fetched anyway, such optimisations are left for future
work.

Whilst this system is simpler than creating rigid data partitions and clearly
provides better privacy than global broadcast, in the absence of additional pri-
vacy measures it is nonetheless still difficult to reason about who may get to see
transaction data. This uncertainty is mitigated by several factors.

Small-subgraph transactions. Some uses of the ledger do not involve widely
circulated asset states. For example, two institutions that wish to keep their
view of a particular deal synchronised but who are making related payments
off-ledger may use transactions that never go outside the involved parties. A
discussion of on-ledger vs off-ledger cash can be found in a later section.

Transaction privacy techniques. Corda supports a variety of transaction
data hiding techniques. For example, public keys can be randomised to make

12

it difficult to link transactions to an identity. “Tear-offs” (§5.7) allow some
parts of a transaction to be presented without the others. In future versions
of the system secure hardware and/or zero knowledge proofs could be used to
convince a party of the validity of a transaction without revealing the underlying
data.

State re-issuance. In cases where a state represents an asset that is backed by
a particular issuer, and the issuer is trusted to behave atomically even when the
ledger isn’t forcing atomicity, the state can simply be ‘exited’ from the ledger
and then re-issued. Because there are no links between the exit and reissue
transactions this shortens the chain. In practice most issuers of highly liquid
assets are already trusted with far more sensitive tasks than reliably issuing pairs
of signed data structures, so this approach is unlikely to be an issue.

5 Data model

5.1 Transaction structure

States are the atomic unit of information in Corda. They are never altered:
they are either current (‘unspent’) or consumed (‘spent’) and hence no longer
valid. Transactions consume zero or more states (inputs) and create zero or more
new states (outputs). Because states cannot exist outside of the transactions
that created them, any state whether consumed or not can be identified by the
identifier of the creating transaction and the index of the state in the outputs
list.

Transactions consist of the following components:

Input references These are (hash, output index) pairs that point to the states
a transaction is consuming.

Output states Each state specifies the notary for the new state, the contract(s)
that define its allowed transition functions and finally the data
itself.

Attachments Transactions specify an ordered list of zip file hashes. Each
zip file may contain code, data, certificates or supporting docu-
mentation for the transaction. Contract code has access to the
contents of the attachments when checking the transaction for
validity.

Commands There may be multiple allowed output states from any given in-
put state. For instance an asset can be moved to a new owner
on the ledger, or issued, or exited from the ledger if the asset
has been redeemed by the owner and no longer needs to be
tracked. A command is essentially a parameter to the contract

13

that specifies more information than is obtainable from exam-
ination of the states by themselves (e.g. data from an oracle
service). Each command has an associated list of public keys.
Like states, commands are object graphs.

Signatures The set of required signatures is equal to the union of the com-
mands’ public keys.

Type Transactions can either be normal or notary-changing. The
validation rules for each are different.

Timestamp When present, a timestamp defines a time range in which the
transaction is considered to have occurrred. This is discussed
in more detail below.

Summaries Textual summaries of what the transaction does, checked by the
involved smart contracts. This field is useful for secure signing
devices (see §10).

Signatures are appended to the end of a transaction and transactions are iden-
tified by the hash used for signing, so signature malleability is not a problem.
There is never a need to identify a transaction including its accompanying sig-
natures by hash. Signatures can be both checked and generated in parallel,
and they are not directly exposed to contract code. Instead contracts check
that the set of public keys specified by a command is appropriate, knowing that
the transaction will not be valid unless every key listed in every command has
a matching signature. Public key structures are themselves opaque. In this
way algorithmic agility is retained: new signature algorithms can be deployed
without adjusting the code of the smart contracts themselves.

Figure 1: An example of a cash issuance transaction

14

Example. In the diagram above, we see an example of a cash issuance trans-
action. The transaction (shown lower left) contains zero inputs and one output,
a newly issued cash state. The cash state (shown expanded top right) contains
several important pieces of information: 1) details about the cash that has been
issued – amount, currency, issuer, owner and so forth, 2) the contract code whose
verify() function will be responsible for verifying this issuance transaction and
also any transaction which seeks to consume this state in the future, 3) a hash of
a document which may contain overarching legal prose to ground the behaviour
of this state and its contract code in a governing legal context.

The transaction also contains a command, which specifies that the intent of
this transaction is to issue cash and the command specifies a public key. The
cash state’s verify function is responsible for checking that the public key(s)
specified on the command(s) are those of the parties whose signatures would be
required to make this transaction valid. In this case, it means that the verify()
function must check that the command has specified a key corresponding to the
identity of the issuer of the cash state. The Corda framework is responsible for
checking that the transaction has been signed by all keys listed by all commands
in the transaction. In this way, a verify() function only needs to ensure that all
parties who need to sign the transaction are specified in Commands, with the
framework responsible for ensuring that the transaction has been signed by all
parties listed in all commands.

5.2 Composite keys

The term “public key” in the description above actually refers to a composite
key. Composite keys are trees in which leaves are regular cryptographic public
keys with an accompanying algorithm identifiers. Nodes in the tree specify
both the weights of each child and a threshold weight that must be met. The
validty of a set of signatures can be determined by walking the tree bottom-up,
summing the weights of the keys that have a valid signature and comparing
against the threshold. By using weights and thresholds a variety of conditions
can be encoded, including boolean formulas with AND and OR.

15

Figure 2: Examples of composite keys

Composite keys are useful in multiple scenarios. For example, assets can be
placed under the control of a 2-of-2 composite key where one leaf key is owned by
a user, and the other by an independent risk analysis system. The risk analysis
system refuses to sign if the transaction seems suspicious, like if too much value
has been transferred in too short a time window. Another example involves
encoding corporate structures into the key, allowing a CFO to sign a large
transaction alone but his subordinates are required to work together. Composite
keys are also useful for notaries. Each participant in a distributed notary is
represented by a leaf, and the threshold is set such that some participants can
be offline or refusing to sign yet the signature of the group is still valid.

Whilst there are threshold signature schemes in the literature that allow com-
posite keys and signatures to be produced mathematically, we choose the less
space efficient explicit form in order to allow a mixture of keys using different
algorithms. In this way old algorithms can be phased out and new algorithms
phased in without requiring all participants in a group to upgrade simultane-
ously.

5.3 Timestamps

Transaction timestamps specify a [start, end] time window within which the
transaction is asserted to have occurred. Timestamps are expressed as windows
because in a distributed system there is no true time, only a large number of
desynchronised clocks. This is not only implied by the laws of physics but also
by the nature of shared transactions - especially if the signing of a transac-
tion requires multiple human authorisations, the process of constructing a joint
transaction could take hours or even days.

16

It is important to note that the purpose of a transaction timestamp is to com-
municate the transaction’s position on the timeline to the smart contract code
for the enforcement of contractual logic. Whilst such timestamps may also be
used for other purposes, such as regulatory reporting or ordering of events in a
user interface, there is no requirement to use them like that and locally observed
timestamps may sometimes be preferable even if they will not exactly match the
time observed by other parties. Alternatively if a precise point on the timeline
is required and it must also be agreed by multiple parties, the midpoint of the
time window may be used by convention. Even though this may not precisely
align to any particular action (like a keystroke or verbal agreement) it is often
useful nonetheless.

Timestamp windows may be open ended in order to communicate that the
transaction occurred before a certain time or after a certain time, but how much
before or after is unimportant. This can be used in a similar way to Bitcoin’s
nLockTime transaction field, which specifies a happens-after constraint.

Timestamps are checked and enforced by notary services. As the participants
in a notary service will themselves not have precisely aligned clocks, whether
a transaction is considered valid or not at the moment it is submitted to a
notary may be unpredictable if submission occurs right on a boundary of the
given window. However, from the perspective of all other observers the notary’s
signature is decisive: if the signature is present, the transaction is assumed to
have occurred within that time.

Reference clocks. In order to allow for relatively tight time windows to be
used when transactions are fully under the control of a single party, notaries are
expected to be synchronised to the atomic clocks at the US Naval Observatory.
Accurate feeds of this clock can be obtained from GPS satellites. Note that
Corda uses the Java timeline10 which is UTC with leap seconds spread over the
last 1000 seconds of the day, thus each day always has exactly 86400 seconds.
Care should be taken to ensure that changes in the GPS leap second counter are
correctly smeared in order to stay synchronised with Java time. When setting a
transaction time window care must be taken to account for network propagation
delays between the user and the notary service, and messaging within the notary
service.

5.4 Attachments and contract bytecodes

Transactions may have a number of attachments, identified by the hash of the
file. Attachments are stored and transmitted separately to transaction data and
are fetched by the standard resolution flow only when the attachment has not
previously been seen before.

Attachments are always zip files11 and cannot be referred to individually by
contract code. The files within the zips are collapsed together into a single logical

17

file system, with overlapping files being resolved in favour of the first mentioned.
Not coincidentally, this is the mechanism used by Java classpaths.

Smart contracts in Corda are defined using JVM bytecode as specified in “The
Java Virtual Machine Specification SE 8 Edition” 4, with some small differences
that are described in a later section. A contract is simply a class that implements
the Contract interface, which in turn exposes a single function called verify.
The verify function is passed a transaction and either throws an exception if the
transaction is considered to be invalid, or returns with no result if the transaction
is valid. The set of verify functions to use is the union of the contracts specified
by each state (which may be expressed as constraints, see §5.9). Embedding the
JVM specification in the Corda specification enables developers to write code in
a variety of languages, use well developed toolchains, and to reuse code already
authored in Java or other JVM compatible languages.

The Java standards also specify a comprehensive type system for expressing
common business data. Time and calendar handling is provided by an imple-
mentation of the JSR 310 specification, decimal calculations can be performed
either using portable (‘strictfp’) floating point arithmetic or the provided
bignum library, and so on. These libraries have been carefully engineered by
the business Java community over a period of many years and it makes sense
to build on this investment.

Contract bytecode also defines the states themselves, which may be arbitrary
object graphs. Because JVM classes are not a convenient form to work with from
non-JVM platforms the allowed types are restricted and a standardised binary
encoding scheme is provided. States may label their properties with a small
set of standardised annotations. These can be useful for controlling how states
are serialised to JSON and XML (using JSR 367 and JSR 222 respectively),
for expressing static validation constraints (JSR 349) and for controlling how
states are inserted into relational databases (JSR 338). This feature is discussed
later.

Attachments may also contain data files that support the contract code. These
may be in the same zip as the bytecode files, or in a different zip that must
be provided for the transaction to be valid. Examples of such data files might
include currency definitions, timezone data and public holiday calendars. Any
public data may be referenced in this way. Attachments are intended for data on
the ledger that many parties may wish to reuse over and over again. Data files
are accessed by contract code using the same APIs as any file on the classpath
would be accessed. The platform imposes some restrictions on what kinds of
data can be included in attachments along with size limits, to avoid people
placing inappropriate files on the global ledger (videos, PowerPoints etc).

Note that the creator of a transaction gets to choose which files are attached.
Therefore, it is typical that states place constraints on the data they’re willing
to accept. Attachments provide data but do not authenticate it, so if there’s a
risk of someone providing bad data to gain an economic advantage there must

18

be a constraints mechanism to prevent that from happening. This is rooted at
the contract constraints encoded in the states themselves: a state can not only
name a class that implements the Contract interface but also place constraints
on the zip/jar file that provides it. That constraint can in turn be used to ensure
that the contract checks the authenticity of the data – either by checking the
hash of the data directly, or by requiring the data to be signed by some trusted
third party.

5.5 Hard forks, specifications and dispute resolution

Decentralised ledger systems often differ in their underlying political ideology
as well as their technical choices. The Ethereum project originally promised
“unstoppable apps” which would implement “code as law”. After a prominent
smart contract was hacked12, an argument took place over whether what had
occurred could be described as a hack at all given the lack of any non-code
specification of what the program was meant to do. The disagreement eventually
led to a split in the community.

As Corda contracts are simply zip files, it is easy to include a PDF or other
documents describing what a contract is meant to actually do. There is no
requirement to use this mechanism, and there is no requirement that these doc-
uments have any legal weight. However in financial use cases it’s expected that
they would be legal contracts that take precedence over the software implemen-
tations in case of disagreement.

It is technically possible to write a contract that cannot be upgraded. If such a
contract governed an asset that existed only on the ledger, like a cryptocurrency,
then that would provide an approximation of “code as law”. We leave discussion
of the wisdom of this concept to political scientists and reddit.

Platform logging There is no direct equivalent in Corda of a block chain
“hard fork”, so the only solution to discarding buggy or fraudulent transaction
chains would be to mutually agree out of band to discard an entire transaction
subgraph. As there is no global visibility either this mutual agreement would not
need to encompass all network participants: only those who may have received
and processed such transactions. The flip side of lacking global visibility is that
there is no single point that records who exactly has seen which transactions.
Determining the set of entities that’d have to agree to discard a subgraph means
correlating node activity logs. Corda nodes log sufficient information to ensure
this correlation can take place. The platform defines a flow to assist with this,
which can be used by anyone. A tool is provided that generates an “investigation
request” and sends it to a seed node. The flow signals to the node administrator
that a decision is required, and sufficient information is transmitted to the
node to try and convince the administrator to take part (e.g. a signed court
order). If the administrator accepts the request through the node explorer

19

interface, the next hops in the transaction chain are returned. In this way the
tool can semi-automatically crawl the network to find all parties that would
be affected by a proposed rollback. The platform does not take a position
on what types of transaction rollback are justified and provides only minimal
support for implementing rollbacks beyond locating the parties that would have
to agree.

Once involved parties are identified there are at least two strategies for editing
the ledger. One is to extend the transaction chain with new transactions that
simply correct the database to match the intended reality. For this to be possible
the smart contract must have been written to allow arbitrary changes outside
its normal business logic when a sufficient threshold of signatures is present.
This strategy is simple and makes the most sense when the number of parties
involved in a state is small and parties have no incentive to leave bad information
in the ledger. For asset states that are the result of theft or fraud the only party
involved in a state may resist attempts to patch things up in this way, as they
may be able to benefit in the real world from the time lag between the ledger
becoming inaccurate and it catching up with reality. In this case a more complex
approach can be used in which the involved parties minus the uncooperative
party agree to mark the relevant states as no longer consumed/spent. This is
essentially a limited form of database rollback.

5.6 Identity lookups

In all block chain inspired systems there exists a tension between wanting to
know who you are dealing with and not wanting others to know. A standard
technique is to use randomised public keys in the shared data, and keep the
knowledge of the identity that key maps to private. For instance, it is consid-
ered good practice to generate a fresh key for every received payment. This
technique exploits the fact that verifying the integrity of the ledger does not re-
quire knowing exactly who took part in the transactions, only that they followed
the agreed upon rules of the system.

Platforms such as Bitcoin and Ethereum have relatively ad-hoc mechanisms for
linking identities and keys. Typically it is the user’s responsibility to manually
label public keys in their wallet software using knowledge gleaned from web-
sites, shop signs and so on. Because these mechanisms are ad hoc and tedious
many users don’t bother, which can make it hard to figure out where money
went later. It also complicates the deployment of secure signing devices and
risk analysis engines. Bitcoin has BIP 709 which specifies a way of signing
a “payment request” using X.509 certificates linked to the web PKI, giving a
cryptographically secured and standardised way of knowing who you are dealing
with. Identities in this system are the same as used in the web PKI: a domain
name, email address or EV (extended validation) organisation name.

Corda takes this concept further. States may define fields of type Party, which

20

encapsulates an identity and a public key. When a state is deserialised from a
transaction in its raw form, the identity field of the Party object is null and
only the public (composite) key is present. If a transaction is deserialised in
conjunction with X.509 certificate chains linking the transient public keys to
long term identity keys the identity field is set. In this way a single data rep-
resentation can be used for both the anonymised case, such as when validating
dependencies of a transaction, and the identified case, such as when trading
directly with a counterparty. Trading flows incorporate sub-flows to transmit
certificates for the keys used, which are then stored in the local database. How-
ever the transaction resolution flow does not transmit such data, keeping the
transactions in the chain of custody pseudonymous.

Deterministic key derivation Corda allows for but does not mandate the
use of determinstic key derivation schemes such as BIP 3213. The infrastructure
does not assume any mathematical relationship between public keys because
some cryptographic schemes are not compatible with such systems. Thus we
take the efficiency hit of always linking transient public keys to longer term keys
with X.509 certificates.

5.7 Oracles and tear-offs

It is sometimes convenient to reveal a small part of a transaction to a counter-
party in a way that allows them to check the signatures and sign it themselves.
A typical use case for this is an oracle, defined as a network service that is
trusted to sign transactions containing statements about the world outside the
ledger only if the statements are true.

Here are some example statements an oracle might check:

• The price of a stock at a particular moment was X.

• An agreed upon interest rate at a particular moment was Y.

• If a specific organisation has declared bankruptcy.

• Weather conditions in a particular place at a particular time.

It is worth asking why a smart contract cannot simply fetch this information
from some internet server itself: why do we insist on this notion of an oracle.
The reason is that all calculations on the ledger must be deterministic. Everyone
must be able to check the validity of a transaction and arrive at exactly the same
answer, at any time (including years into the future), on any kind of computer. If
a smart contract could do things like read the system clock or fetch arbitrary web
pages then it would be possible for some computers to conclude a transaction
was valid, whilst others concluded it was not (e.g. if the remote server had gone
offline). Solving this problem means all the data needed to check the transaction
must be in the ledger, which in turn implies that we must accept the point of

21

view of some specific observer. That way there can be no disagreement about
what happened.

One way to implement oracles would be to have them sign a small data structure
which is then embedded somewhere in a transaction (in a state or command).
We take a different approach in which oracles sign the entire transaction, and
data the oracle doesn’t need to see is “torn off” before the transaction is sent.
This is done by structuring the transaction as a Merkle hash tree so that the hash
used for the signing operation is the root. By presenting a counterparty with
the data elements that are needed along with the Merkle branches linking them
to the root hash, as seen in the diagrams below, that counterparty can sign the
entire transaction whilst only being able to see some of it. Additionally, if the
counterparty needs to be convinced that some third party has already signed the
transaction, that is also straightforward. Typically an oracle will be presented
with the Merkle branches for the command or state that contains the data, and
the timestamp field, and nothing else. The resulting signature contains flag bits
indicating which parts of the structure were presented for signing to avoid a
single signature covering more than expected.

Figure 3: How the transaction’s identifier hash is calculated

22

Figure 4: Construction of a Merkle branch

There are a couple of reasons to take this more indirect approach. One is
to keep a single signature checking code path. By ensuring there is only one
place in a transaction where signatures may be found, algorithmic agility and
parallel/batch verification are easy to implement. When a signature may be
found in any arbitrary location in a transaction’s data structures, and where
verification may be controlled by the contract code itself (as in Bitcoin), it
becomes harder to maximise signature checking efficiency. As signature checks
are often one of the slowest parts of a block chain system, it is desirable to
preserve these capabilities.

Another reason is to provide oracles with a business model. If oracles just signed
statements and nothing else then it would be difficult to run an oracle in which
there are only a small number of potential statements, but determining their
truth is very expensive. People could share the signed statements and reuse them
in many different transactions, meaning the cost of issuing the initial signatures
would have to be very high, perhaps unworkably high. Because oracles sign
specific transactions, not specific statements, an oracle that is charging for its
services can amortise the cost of determining the truth of a statement over many
users who cannot then share the signature itself (because it covers a one-time-use
structure by definition).

5.8 Encumbrances

Each state in a transaction specifies a contract (boolean function) that is invoked
with the entire transaction as input. All contracts must accept in order for the
transaction to be considered valid. Sometimes we would like to compose the

23

behaviours of multiple different contracts. Consider the notion of a “time lock”
– a restriction on a state that prevents it being modified (i.e. sold) until a
certain time. This is a general piece of logic that could apply to many kinds
of assets. Whilst such logic could be implemented in a library and then called
from every contract that might want to benefit from it, that requires all contract
authors to think ahead and include the functionality. It would be better if we
could mandate that the time lock logic ran along side the contract that governs
the locked state.

Consider an asset that is supposed to remain frozen until a time is reached.
Encumbrances allow a state to specify another state that must be present in
any transaction that consumes it. For example, a time lock contract can define
a state that contains the time at which the lock expires, and a simple contract
that just compares that time against the transaction timestamp. The asset
state can be included in a spend-to-self transaction that doesn’t change the
ownership of the asset but does include a time lock state in the outputs. Now if
the asset state is used, the time lock state must also be used, and that triggers
the execution of the time lock contract.

Encumbered states can only point to one encumbrance state, but that state can
itself point to another and so on, resulting in a chain of encumbrances all of
which must be satisfied.

An encumbrance state must be present in the same transaction as the encum-
bered state, as states refer to each other by index alone.

5.9 Contract constraints

The easiest way of tying states to the contract code that defines them is by
hash. This works for very simple and stable programs, but more complicated
contracts may need to be upgraded. In this case it may be preferable for states
to refer to contracts by the identity of the signer. Because contracts are stored
in zip files, and because a Java Archive (JAR) file is just a zip with some extra
files inside, it is possible to use the standard JAR signing infrastructure to
identify the source of contract code. Simple constraints such as “any contract
of this name signed by these keys” allow for some upgrade flexibility, at the cost
of increased exposure to rogue contract developers. Requiring combinations of
signatures helps reduce the risk of a rogue or hacked developer publishing a bad
contract version, at the cost of increased difficulty in releasing new versions.
State creators may also specify third parties they wish to review contract code.
Regardless of which set of tradeoffs is chosen, the framework can accomodate
them.

A contract constraint may use a composite key of the type described in §5.2.
The standard JAR signing protocol allows for multiple signatures from different
private keys, thus being able to satisfy composite keys. The allowed signing

24

algorithms are SHA256withRSA and SHA256withECDSA. Note that the crypto-
graphic algorithms used for code signing may not always be the same as those
used for transaction signing, as for code signing we place initial focus on being
able to re-use the infrastructure.

5.10 Event scheduling

State classes may request flows to be started at given times. When a state is
considered relevant by the vault and the implementing CorDapp is installed and
whitelisted by the administrator (e.g. in the config file), the node may react to
the passage of time by starting new interactions with other nodes, people, or
internal systems. As financial contracts often have a notion of time in them this
feature can be useful for many kinds of state transitions, for example, expiry of
an option contract, management of a default event, re-fixing of an interest rate
swap and so on.

To request scheduled events, a state may implement the SchedulableState

interface and then return a request from the nextScheduledActivity function.
The state will be queried when it is committed to the vault and the scheduler
will ensure the relevant flow is started at the right time.

6 Common financial constructs

6.1 Assets

A ledger that cannot record the ownership of assets is not very useful. We
define a set of classes that model asset-like behaviour and provide some platform
contracts to ensure interoperable notions of cash and obligations.

We define the notion of an OwnableState, implemented as an interface which
any state may conform to. Ownable states are required to have an owner field
which is a composite key (see §5.2). This is utilised by generic code in the vault
(see §8) to manipulate ownable states.

From OwnableState we derive a FungibleAsset concept to represent assets of
measurable quantity, in which units are sufficiently similar to be represented
together in a single ledger state. Making that concrete, pound notes are a
fungible asset: regardless of whether you represent £10 as a single £10 note
or two notes of £5 each the total value is the same. Other kinds of fungible
asset could be barrels of Brent Oil (but not all kinds of crude oil worldwide,
because oil comes in different grades which are not interchangeable), litres of
clean water, kilograms of bananas, units of a stock and so on.

When cash is represented on a digital ledger an additional complication can
arise: for national “fiat” currencies the ledger merely records an entity that has

25

a liability which may be redeemed for some other form (physical currency, a wire
transfer via some other ledger system, etc). This means that two ledger entries
of £1000 may not be entirely fungible because all the entries really represent is
a claim on an issuer, which – if it is not a central bank – may go bankrupt. Even
assuming defaults never happen, the data representing where an asset may be
redeemed must be tracked through the chain of custody, so ‘exiting’ the asset
from the ledger and thus claiming physical ownership can be done.

The Corda type system supports the encoding of this complexity. The Amount<T>
type defines an integer quantity of some token. This type does not support frac-
tional quantities so when used to represent national currencies the quantity must
be measured in pennies, with sub-penny amount requiring the use of some other
type. The token can be represented by any type. A common token type to use
is Issued<T>, which defines a token issued by some party. It encapsulates what
the asset is, who issued it, and an opaque reference field that is not parsed by
the platform – it is intended to help the issuer keep track of e.g. an account
number, the location where the asset can be found in storage, etc.

6.2 Obligations

It is common in finance to be paid with an IOU rather than hard cash (note
that in this section ‘hard cash’ means a balance with the central bank). This
is frequently done to minimise the amount of cash on hand when trading insti-
tutions have some degree of trust in each other: if you make a payment to a
counterparty that you know will soon be making a payment back to you as part
of some other deal, then there is an incentive to simply note the fact that you
owe the other institution and then ‘net out’ these obligations at a later time,
either bilaterally or multilaterally. Netting is a process by which a set of gross
obligations is replaced by an economically-equivalent set where eligible offset-
ting obligations have been elided. The process is conceptually similar to trade
compression, whereby a set of trades between two or more parties are replaced
with an economically similar, but simpler, set. The final output is the amount
of money that needs to actually be transferred.

Corda models a nettable obligation with the Obligation contract, which is
a subclass of FungibleAsset. Obligations have a lifecycle and can express
constraints on the on-ledger assets used for settlement. The contract allows not
only for trading and fungibility of obligations but also bi-lateral and multi-lateral
netting.

It is important to note here that netting calculations can get very complex and
the financial industry contains firms that compete on the quality of their netting
algorithms. The Obligation contract provides methods to calculate simple bi-
lateral nettings, and verify the correctness of both bi and multi-lateral nettings.
For very large, complex multi-lateral nettings it is expected that institutions
would use pre-existing netting implementations.

26

Netting is usually done when markets are closed. This is because it is hard to
calculate nettings and settle up concurrently with the trading positions chang-
ing. The problem can be seen as analagous to garbage collection in a managed
runtime: compacting the heap requires the running program to be stopped so
the contents of the heap can be rewritten. If a group of trading institutions
wish to implement a checked form of ‘market close’ then they can use an en-
cumbrance (see §5.8) to prevent an obligation being changed during certain
hours, as determined by the clocks of the notaries (see §5.3).

Figure 5: Class hierarchy diagram showing the relationships between different
state types

27

6.3 Market infrastructure

Trade is the lifeblood of the economy. A distributed ledger needs to provide a
vibrant platform on which trading may take place. However, the decentralised
nature of such a network makes it difficult to build competitive market infras-
tructure on top of it, especially for highly liquid assets like securities. Markets
typically provide features like a low latency order book, integrated regulatory
compliance, price feeds and other things that benefit from a central meeting
point.

The Corda data model allows for integration of the ledger with existing markets
and exchanges. A sell order for an asset that exists on-ledger can have a partially
signed transaction attached to it. A partial signature is a signature that allows
the signed data to be changed in controlled ways after signing. Partial signatures
are directly equivalent to Bitcoin’s SIGHASH flags and work in the same way
– signatures contain metadata describing which parts of the transaction are
covered. Normally all of a transaction would be covered, but using this metadata
it is possible to create a signature that only covers some inputs and outputs,
whilst allowing more to be added later.

This feature is intended for integration of the ledger with the order books of
markets and exchanges. Consider a stock exchange. A buy order can be sub-
mitted along with a partially signed transaction that signs a cash input state
and a output state representing some quantity of the stock owned by the buyer.
By itself this transaction is invalid, as the cash does not appear in the outputs
list and there is no input for the stock. A sell order can be combined with a
mirror-image partially signed transaction that has a stock state as the input and
a cash state as the output. When the two orders cross on the order book, the
exchange itself can take the two partially signed transactions and merge them
together, creating a valid transaction that it then notarises and distributes to
both buyer and seller. In this way trading and settlement become atomic, with
the ownership of assets on the ledger being synchronised with the view of mar-
ket participants. Note that in this design the distributed ledger itself is not a
marketplace, and does not handle distribution or matching of orders. Rather,
it focuses on management of the pre- and post- trade lifecycles.

Central counterparties. In many markets, central infrastructures such as
clearing houses (also known as Central Counterparties, or CCPs) and Central
Securities Depositories (CSD) have been created. They provide governance,
rules definition and enforcement, risk management and shared data and pro-
cessing services. The partial data visibility, flexible transaction verification logic
and pluggable notary design means Corda could be a particularly good fit for
future distributed ledger services contemplated by CCPs and CSDs.

28

7 Notaries and consensus

Corda does not organise time into blocks. This is sometimes considered strange,
given that it can be described as a block chain system or ‘block chain inspired’.
Instead a Corda network has one or more notary services which provide transac-
tion ordering and timestamping services, thus abstracting the role miners play
in other systems into a pluggable component.

Notaries are expected to be composed of multiple mutually distrusting parties
who use a standard consensus algorithm. Notaries are identified by and sign with
composite public keys (§5.2)that conceptually follow the Interledger Crypto-
Conditions specification14. Note that whilst it would be conventional to use a
BFT algorithm for a notary service, there is no requirement to do so and in
cases where the legal system is sufficient to ensure protocol compliance a higher
performance algorithm like Raft15 may be used. Because multiple notaries can
co-exist a single network may provide a single global BFT notary for general
use and region-specific Raft notaries for lower latency trading within a unified
regulatory area, for example London or New York.

Notaries accept transactions submitted to them for processing and either re-
turn a signature over the transaction, or a rejection error that states that a
double spend has occurred. The presence of a notary signature from the state’s
chosen notary indicates transaction finality. An app developer triggers notarisa-
tion by invoking the Finality flow on the transaction once all other necessary
signatures have been gathered. Once the finality flow returns successfully, the
transaction can be considered committed to the database.

7.1 Comparison to Nakamoto block chains

Bitcoin organises the timeline into a chain of blocks, with each block pointing
to a previous block the miner has chosen to build upon. Blocks also contain a
rough timestamp. Miners can choose to try and extend the block chain from any
previous block, but are incentivised to build on the most recently announced
block by the fact that other nodes in the system only recognise a block if it’s
a part of the chain with the most accumulated proof-of-work. As each block
contains a reward of newly issued bitcoins, an unrecognised block represents a
loss and a recognised block typically represents a profit.

Bitcoin uses proof-of-work because it has a design goal of allowing an unlim-
ited number of identityless parties to join and leave the network at will, whilst
simultaneously making it hard to execute Sybil attacks (attacks in which one
party creates multiple identities to gain undue influence over the network). This
is an appropriate design to use for a peer to peer network formed of volunteers
who can’t/won’t commit to any long term relationships up front, and in which
identity verification is not done. Using proof-of-work then leads naturally to
a requirement to quantise the timeline into chunks, due to the probabilistic

29

nature of searching for a proof. The chunks must then be ordered relative to
each other. The incentive to build on the most recently announced proof of
work is in tension with the reality that it takes time for a proof to circulate
around the network. This means it is desirable that proofs are produced at a
rate that is slow enough that very few are circulating at the same time. Given
that transactions are likely to be produced at a higher rate than this, it implies
a need for the proofs to consolidate multiple transactions. Hence the need for
blocks.

A Corda network is email-like in the sense that nodes have long term stable
identities, of which they can prove ownership of to others. Sybil attacks are
blocked by the network entry process. This allows us to discard proof-of-work
along with its multiple unfortunate downsides:

• Energy consumption is excessively high for such a simple task, being com-
parable at the time of writing to the electricity consumption of an entire
city16. At a time when humanity needs to use less energy rather than
more this is ecologically undesirable.

• High energy consumption forces concentration of mining power in regions
with cheap or free electricity. This results in unpredictable geopolitical
complexities that many users would rather do without.

• Identityless participants mean all transactions must be broadcast to all
network nodes, as there’s no reliable way to know who the miners are.
This worsens privacy.

• The algorithm does not provide finality, only a probabilistic approxima-
tion, which is a poor fit for existing business and legal assumptions.17

• It is theoretically possible for large numbers of miners or even all min-
ers to drop out simultaneously without any protocol commitments being
violated.

Once proof-of-work is disposed of there is no longer any need to quantise the
timeline into blocks because there is no longer any need to slow the publication
of conflict resolution proposals, and because the parties asserting the correctness
of the ordering are known ahead of time regular signatures are sufficient.

7.2 Algorithmic agility

Consensus algorithms are a hot area of research and new algorithms are fre-
quently developed that improve upon the state of the art. Unlike most dis-
tributed ledger systems Corda does not tightly integrate one specific approach.
This is not only to support upgrades as new algorithms are developed, but also
to reflect the fact that different tradeoffs may make sense for different situations
and networks.

30

As a simple example, a notary that uses Raft between nodes that are all within
the same city will provide extremely good performance and latency, at the cost
of being more exposed to malicious attacks or errors by whichever node has been
elected leader. In situations where the members making up a distributed notary
service are all large, regulated institutions that are not expected to try and cor-
rupt the ledger in their own favour trading off security to gain performance may
make sense. In other situations where existing legal or trust relationships are less
robust, slower but byzantine fault tolerant algorithms like BFT-SMaRT18 may
be preferable. Alternatively, hardware security features like Intel SGX®may
be used to convert non-BFT algorithms into a more trusted form using remote
attestation and hardware protection.

Being able to support multiple notaries in the same network has other advan-
tages:

• It is possible to phase out notaries (i.e. sets of participants) that no longer
wish to provide that service by migrating states.

• The scalability of the system can be increased by bringing online new
notaries that run in parallel. As long as access to the ledger has some
locality (i.e. states aren’t constantly being migrated between notaries)
this allows for the scalability limits of common consensus algorithms or
node hardware to be worked around.

• In some but not all cases, regulatory constraints on data propagation can
be respected by having jurisdictionally specific notaries. This would not
work well when two jurisdictions have mutually incompatible constraints
or for assets that may frequently travel around the world, but it can work
when using the ledger to track the state of deals or other facts that are
inherently region specific.

• Notaries can compete on their availability and performance.

• Users can pick between validating and non-validating notaries. See below.

• In some models for how these technologies will be adopted, it is possible
that issuers of assets will find it convenient to ’self-notarise’ transactions
that pertain to assets they have issued and this necessarily requires sup-
port for multiple notaries in the same network. Such a model is likely
to be a transitional state, not least because such a model is inherently
limited in the range of operations that can be supported.

• Separate networks can start independent and be merged together later
(see below).

7.3 Validating and non-validating notaries

Validating notaries resolve and fully check transactions they are asked to de-
conflict. Thus in the degenerate case of a network with just a single notary

31

and without the use of any privacy features, they gain full visibility into every
transaction. Non-validating notaries assume transaction validity and do not re-
quest transaction data or their dependencies beyond the list of states consumed.
With such a notary it is possible for the ledger to become ‘wedged’, as anyone
who knows the hash and index of a state may consume it without checks. If
the cause of the problem is accidental, the incorrect data can be presented to
a non-validating notary to convince it to roll back the commit, but if the error
is malicious then states controlled by such a notary may become permanently
corrupted.

It is therefore possible for users to select their preferred point on a privacy/security
spectrum for each state individually depending on how they expect the data to
be used. When the states are unlikely to live long or propagate far and the only
entities who will learn their transaction hashes are somewhat trustworthy, the
user may select to keep the data from the notary. For liquid assets a validat-
ing notary should always be used to prevent value destruction and theft if the
transaction identifiers leak.

7.4 Merging networks

Because there is no single block chain it becomes possible to merge two inde-
pendent networks together by simply establishing two-way connectivity between
their nodes then configuring each side to trust each other’s notaries and certifi-
cate authorities.

This ability may seem pointless: isn’t the goal of a decentralised ledger to have a
single global database for everyone? It is, but a practical route to reaching this
end state is still required. It is often the case that organisations perceived by
consumers as being a single company are in fact many different entities cross-
licensing branding, striking deals with each other and doing internal trades
with each other. This sort of setup can occur for regulatory reasons, tax rea-
sons, due to a history of mergers or just through a sheer masochistic love of
paperwork. Very large companies can therefore experience all the same syn-
chronisation problems a decentralised ledger is intended to fix but purely within
the bounds of that organisation. In this situation the main problem to tackle is
not malicious actors but rather heterogenous IT departments, varying software
development practices, unlinked user directories and so on. Such organisations
can benefit from gaining experience with the technology internally and cleaning
up their own internal views of the world before tackling the larger problem of
synchronising with the wider world as well.

When merging networks, both sides must trust that each other’s notaries have
never signed double spends. When merging an organisation-private network
into the global ledger it should be possible to simply rely on incentives to pro-
vide this guarantee: there is no point in a company double spending against
itself. However, if more evidence is desired, a standalone notary could be run

32

against a hardware security module with audit logging enabled. The notary it-
self would simply use a private database and run on a single machine, with the
logs exported to the people running a global network for asynchronous post-hoc
verification.

7.5 Guaranteed data distribution

In any global consensus system the user is faced with the question of whether
they have the latest state of the database. Programmers working with block
chains often make the simplifying assumption that because there is no formal
map of miner locations and thus transactions are distributed to miners via
broadcast, that they can listen to the stream of broadcasts and learn if they
have the latest data. Alas, nothing stops someone privately providing a miner
who has a known location with a transaction that they agree not to broadcast.
The first time the rest of the network finds out about this transaction is when
a block containing it is broadcast. When used to do double spending fraud this
type of attack is known as a Finney Attack19. Proof-of-work based systems rely
on aligned incentives to discourage such attacks: to quote the Bitcoin white
paper, “He ought to find it more profitable to play by the rules ... than to
undermine the system and the validity of his own wealth.” In practice this
approach appears to work well enough most of the time, given that miners
typically do not accept privately submitted transactions.

In a system without global broadcast things are very different: the notary clus-
ters must accept transactions directly and there is no mechanism to ensure
that everyone sees that the transaction is occurring. Sometimes this doesn’t
matter: most transactions are irrelevant for you and having to download them
just wastes resources. But occasionally you do wish to become aware that the
ledger state has been changed by someone else. A simple example is an option
contract in which you wish to expire the option unless the counterparty has
already exercised it. Them exercising the option must not require the seller to
sign off on it, as it may be advantageous for the seller to refuse if it would cause
them to lose money. Whilst the seller would discover if the buyer had exercised
the option when they attempted to expire it, due to the notary informing them
that their expiry transaction was a double spend, it is preferable to find out
immediately.

The obvious way to implement this is to give notaries the responsibility for en-
suring all interested parties find out about a transaction. However, this would
require the notaries to know who the involved parties actually are, which would
create an undesirable privacy leak. It would also place extra network load on
the notaries who would frequently be sending transaction data to parties that
may already have it, or may simply not care. In many cases there may be no
requirement for the notary to act as a trusted third party for data distribu-
tion purposes, as game-theoretic assumptions or legal assurances are sufficiently

33

strong that peers can be trusted to deliver transaction data as part of their
regular flows.

To solve this, app developers can choose whether to request transaction distri-
bution by the notary or not. This works by simply piggybacking on the standard
identity lookup flows (see §5.6). If a node wishes to be informed by the notary
when a state is consumed, it can send the certificates linking the random keys in
the state to the notary cluster, which then stores it in the local databases as per
usual. Once the notary cluster has committed the transaction, key identities are
looked up and any which resolve successfully are sent copies of the transaction.
In normal operation the notary is not provided with the certificates linking the
random keys to the long term identity keys and thus does not know who is
involved with the operation (assuming source IP address obfuscation is in use,
see §15).

8 The vault

In any block chain based system most nodes have a wallet, or as we call it, a
vault.

The vault contains data extracted from the ledger that is considered relevant
to the node’s owner, stored in a form that can be easily queried and worked
with. It also contains private key material that is needed to sign transactions
consuming states in the vault. Like with a cryptocurrency wallet, the Corda
vault understands how to create transactions that send value to someone else
by combining asset states and possibly adding a change output that makes the
values balance. This process is usually referred to as ‘coin selection’. Coin
selection can be a complex process. In Corda there are no per transaction net-
work fees, which is a significant source of complexity in other sysetms. However
transactions must respect the fungibility rules in order to ensure that the issuer
and reference data is preserved as the assets pass from hand to hand.

Advanced vault implementations may also perform splitting and merging of
states in the background. The purpose of this is to increase the amount of
transaction creation parallelism supported. Because signing a transaction may
involve human intervention (see §10) and thus may take a significant amount of
time, it can become important to be able to create multiple transactions in par-
allel. The vault must manage state ‘soft locks’ to prevent multiple transactions
trying to use the same output simultaneously. Violation of a soft lock would
result in a double spend being created and rejected by the notary. If a vault
were to contain the entire cash balance of a user in just one state, there could
only be a single transaction being constructed at once and this could impose
unacceptable operational overheads on an organisation. By automatically creat-
ing send-to-self transactions that split the big state into multiple smaller states,
the number of transactions that can be created in parallel is increased. Alter-

34

natively many tiny states may need to be consolidated into a smaller number
of more valuable states in order to avoid hitting transaction size limits. Finally,
in some cases the vault may send asset states back to the issuer for re-issuance,
thus pruning long transaction chains and improving privacy.

The vault is also responsible for managing scheduled events requested by node-
relevant states when the implementing app has been installed (see §5.10).

8.1 Direct SQL access

A distributed ledger is ultimately just a shared database, albeit one with some
unique features. The following features are therefore highly desirable for im-
proving the productivity of app developers:

• Ability to store private data linked to the semi-public data in the ledger.

• Ability to query the ledger data using widely understood tools like SQL.

• Ability to perform joins between entirely app-private data (like customer
notes) and ledger data.

• Ability to define relational constraints and triggers on the underlying ta-
bles.

• Ability to do queries at particular points in time e.g. midnight last night.

• Re-use of industry standard and highly optimised database engines.

• Independence from any particular database engine, without walling off too
many useful features.

Corda states are defined using a subset of the JVM bytecode language which
includes annotations. The vault recognises annotations from the Java Persis-
tence Architecture (JPA) specification defined in JSR 33820. These annotations
define how a class maps to a relational table schema including which member
is the primary key, what SQL types to map the fields to and so on. When a
transaction is submitted to the vault by a flow, the vault finds states it considers
relevant (i.e. which contains a key owned by the node) and the relevant Cor-
Dapp has been installed into the node as a plugin, the states are fed through an
object relational mapper which generates SQL UPDATE and INSERT statements.
Note that data is not deleted when states are consumed, however a join can be
performed with a dedicated metadata table to eliminate consumed states from
the dataset. This allows data to be queried at a point in time, with rows being
evicted to historical tables using external tools.

Nodes come with an embedded database engine out of the box, but may also be
configured to point to a separate RDBMS. The node stores not only state data
but also all node working data in the database, including flow checkpoints. Thus
the state of a node and all communications it is engaged in can be backed up by
simply backing up the database itself. The JPA annotations are independent

35

of any particular database engine or SQL dialect and thus states cannot use
any proprietary column types or other features, however, because the ORM is
only used on the write paths users are free to connect to the backing database
directly and issue SQL queries that utilise any features of their chosen database
engine that they like. They can also create their own tables and create merged
views of the underlying data for end user applications, as long as they don’t
impose any constraints that would prevent the node from syncing the database
with the actual contents of the ledger.

States are arbitrary object graphs. Whilst nothing stops a state from containing
multiple classes intended for different tables, it is typical that the relational
representation will not be a direct translation of the object-graph representation.
States are queried by the vault for the ORM mapped class to use, which will
often skip ledger-specific data that’s irrelevant to the user like opaque public
keys and may expand single fields like an Amount<Issued<Currency>> type into
multiple database columns.

It’s worth noting here that although the vault only responds to JPA annota-
tions it is often useful for states to be annotated in other ways, for instance to
customise its mapping to XML/JSON, or to impose validation constraints21.
These annotations won’t affect the behaviour of the node directly but may be
useful when working with states in surrounding software.

8.2 Key randomisation

A standard privacy technique in block chain systems is the use of randomised
unlinkable public keys to stand in for actual verified identities. Ownership of
these pseudonyms may be revealed to a counterparty using a simple interactive
protocol in which Alice selects a random nonce (‘number used once’) and sends
it to Bob, who then signs the nonce with the private key corresponding to the
public key he is proving ownership of.

Generating fresh keys for each new deal or asset transfer rapidly results in many
private keys being created. These keys must all be backed up and kept safe,
which poses a significant management problem when done at scale. The canoni-
cal way to resolve this problem is through the use of deterministic key derivation,
as pioneered by the Bitcoin community in BIP 32 ‘Hierarchical Deterministic
Wallets’13. Deterministic key derivation allows all private key material needed
to be derived from a single, small pool of entropy (e.g. a carefully protected and
backed up 128 bits of random data). More importantly, when the full BIP 32
technique is used in combination with an elliptic curve that supports it, pub-
lic keys may also be deterministically derived without access to the underlying
private key material. This allows devices to provide fresh public keys to coun-
terparties without being able to sign with those keys, enabling better security
along with operational efficiencies.

Corda does not place any constraints on the mathematical properties of the

36

digital signature algorithms parties use. However, implementations are recom-
mended to use hierarchical deterministic key derivation when possible.

9 Domain specific languages

9.1 Clauses

When writing a smart contract, many desired features and patterns crop up
repeatedly. For example it is expected that all production quality asset contracts
would want the following features:

• Issuance and exit transactions.

• Movement transactions (reassignment of ownership).

• Fungibility management (see §6).

• Support for upgrading to new versions of the contract.

Many of these seemingly simple features have obscure edge cases. One example
is a need to prevent the creation of asset states that contain zero or negative
quantities of the asset. Another is to ensure that states are summed for fungibil-
ity purposes without accidentally assuming that the transaction only moves one
type of asset at once. Rather than expect contract developers to reimplement
these pieces of low level logic the Corda standard library provides clauses, a
small class library that implement reusable pieces of contract logic. A contract
writer may create their own clauses and then pass the set of contract clauses
together to a library function that interprets them.

9.2 Combinator libraries

Domain specific languages for the expression of financial contracts are a popular
area of research. A seminal work is ‘Composing contracts’ by Peyton-Jones,
Seward and Eber [PJSE200022] in which financial contracts are modelled with
a small library of Haskell combinators. These models can then be used for
valuation of the underlying deals. Block chain systems use the term ‘contract’
in a slightly different sense to how PJSE do but the underlying concepts can
be adapted to our context as well. The platform provides an experimental
universal contract that builds on the language extension features of the Kotlin
programming language. To avoid linguistic confusion it refers to the combined
code/data bundle as an ‘arrangement’ rather than a contract. A European FX
call option expressed in this language looks like this:

37

val european_fx_option = arrange {

actions {

acmeCorp may {

"exercise" anytime {

actions {

(acmeCorp or highStreetBank) may {

"execute".givenThat(after("2017-09-01")) {

highStreetBank.owes(acmeCorp, 1.M, EUR)

acmeCorp.owes(highStreetBank, 1200.K, USD)

}

}

}

}

}

highStreetBank may {

"expire".givenThat(after("2017-09-01")) {

zero

}

}

}

}

The programmer may define arbitrary ‘actions’ along with constraints on when
the actions may be invoked. The zero token indicates the termination of the
deal.

As can be seen, this DSL combines both what is allowed and deal-specific data
like when and how much is allowed, therefore blurring the distinction the core
model has between code and data. It builds on prior work to enable not only
valuation/cash flow calculations, but also direct enforcement of the contract’s
logic at the database level as well.

9.3 Formally verifiable languages

Corda contracts can be upgraded. However, given the coordination problems
inherent in convincing many participants in a large network to accept a new
version of a contract, a frequently cited desire is for formally verifiable languages
to be used to try and guarantee the correctness of the implementations.

We do not attempt to tackle this problem ourselves. However, because Corda
focuses on deterministic execution of any JVM bytecode, formally verifiable
languages that target this instruction set are usable for the expression of smart
contracts. A good example of this is the Whiley language by Dr David Pearce23,
which checks program-integrated proofs at compile time. By building on industry-
standard platforms, we gain access to cutting edge research from the computer
science community outside of the distributed systems world.

38

9.4 Projectional editing

Custom languages and type systems for the expression of contract logic can
be naturally combined with projectional editing, in which source code is not
edited textually but rather by a structure aware editor24. Such languages can
consist not only of traditional grammar-driven text oriented structures but also
diagrams, tables and recursive compositions of them together. Given the fre-
quent occurrence of data tables and English-oriented nature of many financial
contracts, a dedicated environment for the construction of smart contract logic
may be appreciated by the users.

10 Secure signing devices

10.1 Background

A common feature of digital financial systems and block chain-type systems
in particular is the use of secure client-side hardware to hold private keys and
perform signing operations with them. Combined with a zero tolerance approach
to transaction rollbacks, this is one of the ways they reduce overheads: by
attempting to ensure that transaction authorisation is robust and secure, and
thus that signatures are reliable.

Many banks have rolled out CAP (chip authentication program) readers to con-
sumers which allow logins to online banking using a challenge/response protocol
to a smartcard. The user is expected to type in the right codes and copy the
responses back to the computer by hand. These devices are cheap, but tend to
have small, unreliable, low resolution screens and can be subject to confusion
attacks if there is malware on the PC, e.g. if the malware convinces the user
they are performing a login challenge whereas in fact they are authorising a
payment to a new account. The primary advantage is that the signing key is
held in a robust and cheap smart card, so the device can be replaced without
replacing the key.

The state-of-the-art in this space are devices like the TREZOR25 by Satoshi
Labs or the Ledger Blue. These were developed by and for the Bitcoin commu-
nity. They are more expensive than CAP readers and feature better screens and
USB connections to eliminate typing. Advanced devices like the Ledger Blue
support NFC and Bluetooth as well. These devices differ from CAP readers
in another key respect: instead of signing arbitrary, small challenge numbers,
they actually understand the native transaction format of the network to which
they’re specialised and parse the transaction to figure out the message to present
to the user, who then confirms that they wish to perform the action printed on
the screen by simply pressing a button. The transaction is then signed inter-
nally before being passed back to the PC via the USB/NFC/Bluetooth connec-
tion.

39

This setup means that rather than having a small device that authorises to a
powerful server (which controls all your assets), the device itself controls the
assets. As there is no smartcard equivalent the private key can be exported off
the device by writing it down in the form of “wallet words”: 12 random words
derived from the contents of the key. Because elliptic curve private keys are
small (256 bits), this is not as tedious as it would be with the much larger RSA
keys the financial industry is typically using.

There are clear benefits to having signing keys be kept on personal, employee-
controlled devices only, with the organisation’s node not having any ability to
sign for transactions itself:

• If the node is hacked by a malicious intruder or bad insider they cannot
steal assets, modify agreements, or do anything else that requires human
approval, because they don’t have access to the signing keys. There is no
single point of failure from a key management perspective.

• It’s more clear who signed off on a particular action – the signatures prove
which devices were used to sign off on an action. There can’t be any back
doors or administrator tools which can create transactions on behalf of
someone else.

• Devices that integrate fingerprint readers and other biometric authenti-
cation could further increase trust by making it harder for employees to
share/swap devices. A smartphone or tablet could be also used as a trans-
action authenticator.

10.2 Confusion attacks

The biggest problem facing anyone wanting to integrate smart signing devices
into a distributed ledger system is how the device processes transactions. For
Bitcoin it’s straightforward for devices to process transactions directly because
their format is very small and simple (in theory – in practice a fixable quirk of the
Bitcoin protocol actually significantly complicates how these devices must work).
Thus turning a Bitcoin transaction into a human meaningful confirmation screen
is quite easy:

Confirm payment of 1.23 BTC to 1AbCd0123456.......

This confirmation message is susceptible to confusion attacks because the opaque
payment address is unpredictable. A sufficiently smart virus/attacker could have
swapped out a legitimate address of a legitimate counterparty you are expecting
to pay with one of their own, thus you’d pay the right amount to the wrong
place. The same problem can affect financial authenticators that verify IBANs
and other account numbers: the user’s source of the IBAN may be an email
or website they are viewing through the compromised machine. The BIP 709

protocol was designed to address this attack by allowing a certificate chain to be

40

presented that linked a target key with a stable, human meaningful and verified
identity.

For a generic ledger we are faced with the additional problem that transactions
may be of many different types, including new types created after the device was
manufactured. Thus creating a succinct confirmation message inside the device
would become an ever-changing problem requiring frequent firmware updates.
As firmware upgrades are a potential weak point in any secure hardware scheme,
it would be ideal to minimise their number.

10.3 Transaction summaries

To solve this problem we add a top level summaries field to the transaction
format (joining inputs, outputs, commands, attachments etc). This new top
level field is a list of strings. Smart contracts get a new responsibility. They
are expected to generate an English message describing what the transaction is
doing, and then check that it is present in the transaction. The platform ensures
no unexpected messages are present. The field is a list of strings rather than
a single string because a transaction may do multiple things simultaneously in
advanced use cases.

Because the calculation of the confirmation message has now been moved to the
smart contract itself, and is a part of the transaction, the transaction can be
sent to the signing device: all it needs to do is extract the messages and print
them to the screen with YES/NO buttons available to decide whether to sign
or not. Because the device’s signature covers the messages, and the messages
are checked by the contract based on the machine readable data in the states,
we can know that the message was correct and legitimate.

The design above is simple but has the issue that large amounts of data are sent
to the device which it doesn’t need. As it’s common for signing devices to have
constrained memory, it would be unfortunate if the complexity of a transaction
ended up being limited by the RAM available in the users’ signing devices. To
solve this we can use the tear-offs mechanism (see §5.7) to present only the
summaries and the Merkle branch connecting them to the root. The device can
then sign the entire transaction contents having seen only the textual summaries,
knowing that the states will trigger the contracts which will trigger the summary
checks, thus the signature covers the machine-understandable version of the
transaction as well.

Note, we assume here that contracts are not themselves malicious. Whilst a
malicious user could construct a contract that generated misleading messages,
for a user to see states in their vault and work with them requires the accom-
panying CorDapp to be loaded into the node as a plugin and thus whitelisted.
There is never a case where the user may be asked to sign a transaction involv-
ing contracts they have not previously approved, even though the node may
execute such contracts as part of verifying transaction dependencies.

41

10.4 Identity substitution

Contract code only works with opaque representations of public keys. Because
transactions in a chain of custody may need to be anonymised, it isn’t possible
for a contract to access identity information from inside the sandbox. Therefore
it cannot generate a complete message that includes human meaningful identity
names even if the node itself does have this information.

To solve this the transaction is provided to the device along with the X.509
certificate chains linking the pseudonymous public keys to the long term identity
certificates, which for transactions involving the user should always be available
(as they by definition know who their trading counterparties are). The device
can verify those certificate chains to build up a mapping of index to human
readable name. The messages placed inside a transaction may contain numeric
indexes of the public keys required by the commands using backslash syntax, and
the device must perform the message substitution before rendering. Care must
be taken to ensure that the X.500 names issued to network participants do not
contain text chosen to deliberately confuse users, e.g. names that contain quote
marks, partial instructions, special symbols and so on. This can be enforced at
the network permissioning level.

10.5 Multi-lingual support

The contract is expected to generate a human readable version of the trans-
action. This should be in English, by convention. In theory, we could define
the transaction format to support messages in different languages, and if the
contract supported that the right language could then be picked by the signing
device. However, care must be taken to ensure that the message the user sees
in alternative languages is correctly translated and not subject to ambiguity or
confusion, as otherwise exploitable confusion attacks may arise.

11 Client RPC and reactive collections

Any realistic deployment of a distributed ledger faces the issue of integration
with an existing ecosystem of surrounding tools and processes. Ideally, programs
that interact with the node will be loosely coupled, authenticated, robust against
transient node outages and restarts, and speed differences (e.g. production of
work being faster than completion of work) will be handled transparently.

To meet these needs, Corda nodes expose a simple RPC mechanism that has
a couple of unusual features. The underlying transport is message queues
(AMQP) and methods can return object graphs that contain Rx observables26

which may in turn emit more observables.

42

It is a common pattern for RPCs to return a snapshot of some data structure,
along with an observable that emits objects representing a delta on that data
structure. The client library has functionality to reconstruct the snapshot +
diffs into a observable collections of the type that can be bound directly to a
JavaFX user interface. In this way, rendering data structures in the global ledger
in a rich client app that stays fresh becomes a straightforward operation that
requires minimal work from the developer: simply wiring the pieces together
in a functional way is sufficient. Reactive transforms over these observable
collections such as mappings, filterings, sortings and so on make it easy to build
user interfaces in a functional programming style.

Because RPC transport takes place via the node’s message queue broker, the
framework automatically recovers from restarts of the node/node components,
IP addresses changes on the client and similar interruptions to communication.
Likewise, programs that need to live for a long time and survive restarts, up-
grades and moves can request that observations be sent to a persistent queue.
Backpressure and queue management is supplied by the broker. Additional ca-
pacity for processing RPCs can be added by attaching more RPC processors to
the broker which load balances between them automatically.

It can be asked why Corda does not use the typical REST+JSON approach to
communicating with the node. The reasons are:

• A preference for binary protocols over textual protocols, as text based
protocols tend to be more susceptible to escaping and other buffer man-
agement problems that can lead to security issues.

• Message queue brokers provide significant amounts of infrastructure for
building reliable apps which plain HTTP does not such as backpressure
management, load balancing, queue browsing, management of speed dif-
ferences and so on.

• REST based protocols have multiple conventions for streaming of results
back to the client, none of which are ideal for the task.

Being able to connect live data structures directly to UI toolkits also contributes
to the avoidance of XSS exploits, XSRF exploits and similar security problems
based on losing track of buffer boundaries.

12 Data distribution groups

By default, distribution of transaction data is defined by app-provided flows
(see §4). Flows specify when and to which peers transactions should be sent.
Typically these destinations will be calculated based on the content of the states
and the available identity lookup certificates, as the intended use case of financial
data usually contains the identities of the relevant parties within it. Sometimes
though, the set of parties that should receive data isn’t known ahead of time

43

and may change after a transaction has been created. For these cases partial
data visibility is not a good fit and an alternative mechanism is needed.

A data distribution group (DDG) is created by generating a keypair and a self-
signed certificate for it. Groups are identified internally by their public key
and may be given string names in the certificate, but nothing in the software
assumes the name is unique: it’s intended only for human consumption and it
may conflict with other independent groups. In case of conflict user interfaces
disambiguate by appending a few characters of the base58 encoded public key
to the name like so: ”My popular group name (a4T)”. As groups are not
globally visible anyway, it is unlikely that conflicts will be common or require
many code letters to deconflict, and some groups may not even be intended for
human consumption at all.

Once a group is created other nodes can be invited to join it by using an invita-
tion flow. Membership can be either read only or read/write. To add a node as
read-only, the certificate i.e. pubkey alone is sent. To add a node as read/write
the certificate and private key are sent. A future elaboration on the design may
support giving each member a separate private key which would allow tracing
who added transactions to a group, but this is left for future work. In either
case the node records in its local database which other nodes it has invited to
the group once they accept the invitation.

When the invite is received the target node runs the other side of the flow as
normal, which may either automatically accept membership if it’s configured to
trust the inviting node, or send a message to a message queue for processing
by an external system, or kick it up to a human administrator for approval.
Invites to groups the node is already a member of are rejected. The accepting
node also records which node invited it. So, there ends up being a two-way
recorded relationship between inviter and invitee stored in their vaults. Finally
the inviter side of the invitation flow pushes a list of all the transaction IDs that
exist in the group and the invitee side resolves all of them. The end result is
that all the transactions that are in the group are sent to the new node (along
with all dependencies).

Note that this initial download is potentially infinite if transactions are added
to the group as fast or faster than the new node is downloading and checking
them. Thus whilst it may be tempting to try and expose a notion of ‘doneness’
to the act of joining a group, it’s better to see the act of joining as happening at
a specific point in time and the resultant flood of transaction data as an ongoing
stream, rather than being like a traditional file download.

When a transaction is sent to the vault, it always undergoes a relevancy test,
regardless of whether it is in a group or not (see §8). This test is extended to
check also for the signatures of any groups the node is a member of. If there’s
a match then the transaction’s states are all considered relevant. In addition,
the vault looks up which nodes it invited to this group, and also which nodes
invited it, removes any nodes that have recently sent us this transaction and

44

then kicks off a PropagateTransactionToGroup flow with each of them. The
other side of this flow checks if the transaction is already known, if not requests
it, checks that it is indeed signed by the group in question, resolves it and then
assuming success, sends it to the vault. In this way a transaction added by any
member of the group propagates up and down the membership tree until all
the members have seen it. Propagation is idempotent – if the vault has already
seen a transaction before then it isn’t processed again.

The structure we have so far has some advantages and one big disadvantage.
The advantages are:

Simplicity The core data model is unchanged. Access control is handled using existing
tools like signatures, certificates and flows.

Privacy It is possible to join a group without the other members being aware that
you have done so. It is possible to create groups without non-members
knowing the group exists.

Scalability Groups are not registered in any central directory. A group that exists
between four parties imposes costs only on those four.

Performance Groups can be created as fast as you can generate keypairs and invite
other nodes to join you.

Responsibility For every member of the group there is always a node that has a respon-
sibility for sending you new data under the protocol (the inviting node).
Unlike with Kademlia style distributed hash tables, or Bitcoin style global
broadcast, you can never find yourself in a position where you didn’t re-
ceive data yet nobody has violated the protocol. There are no points at
which you pick a random selection of nodes and politely ask them to do
something for you, hoping that they’ll choose to stick around.

The big disadvantage is that it’s brittle. If you have a membership tree and a
node goes offline for a while, then propagation of data will split and back up
in the outbound queues of the parents and children of the offline node until it
comes back.

To strengthen groups we can add a new feature, membership broadcasts. Mem-
bers of the group that have write access may choose to sign a membership
announcement and propagate it through the tree. These announcements are
recorded in the local database of each node in the group. Nodes may include
these announced members when sending newly added transactions. This con-
verts the membership tree to a graph that may contain cycles, but infinite
propagation loops are not possible because nodes ignore announcements of new
transactions/attachments they’ve already received. Whether a group prefers
privacy or availability may be hinted in the certificate that defines it: if avail-
ability is preferred, this is a signal that members should always announce them-
selves (which would lead to a mesh).

The network map for a network defines the event horizon, the span of time that

45

is allowed to elapse before an offline node is considered to be permanently gone.
Once a peer has been offline for longer than the event horizon any nodes that
invited it remove it from their local tables. If a node was invited to a group by a
gone peer and there are no other nodes that announced their membership it can
use, the node should post a message to a queue and/or notify the administrator,
as it’s now effectively been evicted from the group.

The resulting arrangement may appear similar to a gossip network. However
the underlying membership tree structure remains. Thus when all nodes are
online (or online enough) messages are guaranteed to propagate to everyone in
the network. You can’t get situations where a part of the group has become split
from the rest without anyone being aware of that fact; an unlikely but possible
occurrence in a gossip network. It also isn’t like a distributed hash table where
data isn’t fully replicated, so we avoid situations where data has been added to
the group but stops being available due to node outages. It is always possible
to reason about the behaviour of the network and always possible to assign
responsibility if something goes wrong.

Note that it is not possible to remove members after they have been added to
a group. We could provide a remove announcement but it’d be advisory only:
nothing stops nodes from ignoring it. It is also not possible to enumerate mem-
bers of a group because there is no requirement to do a membership broadcast
when you join and no way to enforce such a requirement.

13 Deterministic JVM

It is important that all nodes that process a transaction always agree on whether
it is valid or not. Because transaction types are defined using JVM bytecode,
this means the execution of that bytecode must be fully deterministic. Out of
the box a standard JVM is not fully deterministic, thus we must make some
modifications in order to satisfy our requirements. Non-determinism could come
from the following sources:

• Sources of external input e.g. the file system, network, system properties,
clocks.

• Random number generators.

• Different decisions about when to terminate long running programs.

• Object.hashCode(), which is typically implemented either by returning
a pointer address or by assigning the object a random number. This can
surface as different iteration orders over hash maps and hash sets.

• Differences in hardware floating point arithmetic.

• Multi-threading.

46

• Differences in API implementations between nodes.

• Garbage collector callbacks.

To ensure that the contract verify function is fully pure even in the face of
infinite loops we construct a new type of JVM sandbox. It utilises a bytecode
static analysis and rewriting pass, along with a small JVM patch that allows
the sandbox to control the behaviour of hashcode generation. Contract code
is rewritten the first time it needs to be executed and then stored for future
use.

The bytecode analysis and rewrite performs the following tasks:

• Inserts calls to an accounting object before expensive bytecodes. The
goal of this rewrite is to deterministically terminate code that has run for
an unacceptably long amount of time or used an unacceptable amount
of memory. Expensive bytecodes include method invocation, allocation,
backwards jumps and throwing exceptions.

• Prevents exception handlers from catching Throwable, Error or ThreadDeath.

• Adjusts constant pool references to relink the code against a ‘shadow’
JDK, which duplicates a subset of the regular JDK but inside a dedicated
sandbox package. The shadow JDK is missing functionality that contract
code shouldn’t have access to, such as file IO or external entropy.

• Sets the strictfp flag on all methods, which requires the JVM to do
floating point arithmetic in a hardware independent fashion. Whilst we
anticipate that floating point arithmetic is unlikely to feature in most
smart contracts (big integer and big decimal libraries are available), it is
available for those who want to use it.

• Forbids invokedynamic bytecode except in special cases, as the libraries
that support this functionality have historically had security problems and
it is primarily needed only by scripting languages. Support for the specific
lambda and string concatenation metafactories used by Java code itself are
allowed.

• Forbids native methods.

• Forbids finalizers.

The cost instrumentation strategy used is a simple one: just counting bytecodes
that are known to be expensive to execute. Method size is limited and jumps
count towards the budget, so such a strategy is guaranteed to eventually ter-
minate. However it is still possible to construct bytecode sequences by hand
that take excessive amounts of time to execute. The cost instrumentation is
designed to ensure that infinite loops are terminated and that if the cost of
verifying a transaction becomes unexpectedly large (e.g. contains algorithms
with complexity exponential in transaction size) that all nodes agree precisely
on when to quit. It is not intended as a protection against denial of service

47

attacks. If a node is sending you transactions that appear designed to simply
waste your CPU time then simply blocking that node is sufficient to solve the
problem, given the lack of global broadcast.

Opcode budgets are separate per opcode type, so there is no unified cost model.
Additionally the instrumentation is high overhead. A more sophisticated design
would be to statically calculate bytecode costs as much as possible ahead of time,
by instrumenting only the entry point of ‘accounting blocks’, i.e. runs of basic
blocks that end with either a method return or a backwards jump. Because only
an abstract cost matters (this is not a profiler tool) and because the limits are
expected to bet set relatively high, there is no need to instrument every basic
block. Using the max of both sides of a branch is sufficient when neither branch
target contains a backwards jump. This sort of design will be investigated if the
per category opcode-at-a-time accounting turns out to be insufficient.

A further complexity comes from the need to constrain memory usage. The
sandbox imposes a quota on bytes allocated rather than bytes retained in order
to simplify the implementation. This strategy is unnecessarily harsh on smart
contracts that churn large quantities of garbage yet have relatively small peak
heap sizes and, again, it may be that in practice a more sophisticated strategy
that integrates with the garbage collector is required in order to set quotas to
a usefully generic level.

Control over Object.hashCode() takes the form of new JNI calls that allow
the JVM’s thread local random number generator to be reseeded before ex-
ecution begins. The seed is derived from the hash of the transaction being
verified.

Finally, it is important to note that not just smart contract code is instrumented,
but all code that it can transitively reach. In particular this means that the
‘shadow JDK’ is also instrumented and stored on disk ahead of time.

14 Scalability

Scalability of block chains and block chain inspired systems has been a constant
topic of discussion since Nakamoto first proposed the technology in 2008. We
make a variety of choices and tradeoffs that affect and ensure scalability. As
most of the initial intended use cases do not involve very high levels of traffic, the
reference implementation is not heavily optimised. However, the architecture
allows for much greater levels of scalability to be achieved when desired.

Partial visibility. Nodes only encounter transactions if they are involved in
some way, or if the transactions are dependencies of transactions that involve
them in some way. This loosely connected design means that it is entirely
possible for most nodes to never see most of the transaction graph, and thus

48

they do not need to process it. This makes direct scaling comparisons with
other distributed and decentralised database systems difficult, as they invariably
measure performance in transctions/second. For Corda, as writes are lazily
replicated on demand, it is difficult to quote a transactions/second figure for
the whole network.

Distributed node. At the center of a Corda node is a message queue broker.
Nodes are logically structured as a series of microservices and have the potential
in future to be run on separate machines. For example, the embedded relational
database can be swapped out for an external database that runs on dedicated
hardware. Whilst a single flow cannot be parallelised, a node under heavy
load would typically be running many flows in parallel. As flows access the
network via the broker and local state via an ordinary database connection,
more flow processing capacity could be added by just bringing online additional
flow workers. This is likewise the case for RPC processing.

Signatures outside the transactions. Corda transaction identifiers are the
root of a Merkle tree calculated over its contents excluding signatures. This has
the downside that a signed and partially signed transaction cannot be distin-
guished by their canonical identifier, but means that signatures can easily be
verified in parallel. Corda smart contracts are deliberately isolated from the un-
derlying cryptography and are not able to request signature checks themselves:
they are run after signature verification has taken place and don’t execute at
all if required signatures are missing. This ensures that signatures for a single
transaction can be checked concurrently even though the smart contract code
for that transaction is not parallelisable. (note that unlike some other systems,
transactions involving the same contracts can be checked in parallel.)

Multiple notaries. It is possible to increase scalability in some cases by
bringing online additional notary clusters. Note that this only adds capacity if
the transaction graph has underlying exploitable structure (e.g. geographical
biases), as a purely random transaction graph would end up constantly crossing
notaries and the additional transactions to move states from one notary to
another would negate the benefit. In real trading however the transaction graph
is not random at all, and thus this approach may be helpful.

Asset reissuance. In the case where the issuer of an asset is both trustworthy
and online, they may exit and re-issue an asset state back onto the ledger with
a new reference field. This effectively truncates the dependency graph of that
asset which both improves privacy and scalability, at the cost of losing atomicity
(it is possible for the issuer to exit the asset but not re-issue it, either through
incompetence or malice).

49

Non-validating notaries. The overhead of checking a transaction for validity
before it is notarised is likely to be the main overhead for non-BFT notaries.
In the case where raw throughput is more important than ledger integrity it is
possible to use a non-validating notary. See §7.3.

The primary bottleneck in a Corda network is expected to be the notary clus-
ters, especially for byzantine fault tolerant (BFT) clusters made up of mutually
distrusting nodes. BFT clusters are likely to be slower partly because the un-
derlying protocols are typically chatty and latency sensitive, and partly because
the primary situation when using a BFT protocol is beneficial is when there is
no shared legal system which can be used to resolve fraud or other disputes,
i.e. when cluster participants are spread around the world and thus the speed
of light becomes a major limiting factor.

The primary bottleneck in a Corda node is expected to be flow checkpointing,
as this process involves walking the stack and heap then writing out the snap-
shotted state to stable storage. Both of these operations are computationally
intensive. This may seem unexpected, as other platforms typically bottleneck
on signature checking operations. It is worth noting though that the main rea-
son other platforms do not bottleneck on checkpointing operations is that they
typically don’t provide any kind of app-level robustness services at all, and so
the cost of checkpointing state (which must be paid eventually!) is accounted
to the application developer rather than the platform. When a flow developer
knows that a network communication is idempotent and thus can be replayed,
they can opt out of the checkpointing process to gain throughput at the cost
of additional wasted work if the flow needs to be evicted to disk. Note that
checkpoints and transaction data can be stored in any NoSQL database (such
as Cassandra), at the cost of a more complex backup strategy.

Due to partial visibility nodes check transaction graphs ‘just in time’ rather than
as a steady stream of announcements by other participants. This complicates
the question of how to measure the scalability of a Corda node. Other block
chain systems quote performance as a constant rate of transactions per unit
time. However, our ‘unit time’ is not evenly distributed: being able to check
1000 transactions/sec is not necessarily good enough if on presentation of a
valuable asset you need to check a transation graph that consists of many more
transactions and the user is expecting the transaction to show up instantly.
Future versions of the platform may provide features that allow developers to
smooth out the spikey nature of Corda transaction checking by, for example,
pre-pushing transactions to a node when the developer knows they will soon
request the data anyway.

50

15 Privacy

Privacy is not a standalone feature in the way that many other aspects de-
scribed in this paper are, so this section summarises features described else-
where. Corda exploits multiple techniques to improve user privacy over other
distributed ledger systems:

Partial data visibility. Transactions are not globally broadcast as in many
other systems.

Transaction tear-offs. Transactions are structured as Merkle trees, and may
have individual subcomponents be revealed to parties who already know the
Merkle root hash. Additionally, they may sign the transaction without being
able to see all of it. See §5.7

Key randomisation. The vault generates and uses random keys that are
unlinkable to an identity without the corresponding linkage certificate. See
§8.

Graph pruning. Large transaction graphs that involve liquid assets can be
‘pruned’ by requesting the asset issuer to re-issue the asset onto the ledger with
a new reference field. This operation is not atomic, but effectively unlinks the
new version of the asset from the old, meaning that nodes won’t attempt to
explore the original dependency graph during verification.

Corda has been designed with the future integration of additional privacy tech-
nologies in mind. Of all potential upgrades, three are particularly worth a
mention.

Secure hardware. Although we narrow the scope of data propagation to only
nodes that need to see that data, ‘need’ can still be an unintuitive concept in
a decentralised database where often data is required only to perform security
checks. We have successfully experimented with running contract verification
inside a secure enclave protected JVM using Intel SGX™ , an implementation of
the ‘trusted computing’ concept27. Secure hardware platforms allow computa-
tion to be performed in an undebuggable tamper-proof execution environment,
for the software running inside that environment to derive encryption keys ac-
cessible only to that instance, and for the software to remotely attest to a third
party over the internet that it is indeed running in the secure state. By hav-
ing nodes remotely attest to each other that they are running smart contract
verification logic inside an enclave it becomes possible for the dependencies
of a transaction to be transmitted to a peer encrypted under an enclave key,

51

thus allowing them to verify the dependencies using software they have audited
themselves, but without being able to see the data on which it operates.

Secure hardware opens up the potential for a one-shot privacy model that would
dramatically simplify the task of writing smart contracts. However, it does still
require the sensitive data to be sent to the peer who may then attempt to attack
the hardware or exploit side channels to extract business intelligence from inside
the encrypted container.

Mix networks. Some nodes may be in the position of learning about transac-
tions that aren’t directly related to trades they are doing, for example notaries
or regulator nodes. Even when key randomisation is used these nodes can still
learn valuable identity information by simply examining the source IP addresses
or the authentication certificates of the nodes sending the data for notarisation.
The traditional cryptographic solution to this problem is a mix network 28. The
most famous mix network is Tor, but a more appropriate design for Corda would
be that of an anonymous remailer. In a mix network a message is repeatedly
encrypted in an onion-like fashion using keys owned by a small set of randomly
selected nodes. Each layer in the onion contains the address of the next ‘hop’.
Once the message is delivered to the first hop, it decrypts it to reveal the next
encrypted layer and forwards it onwards. The return path operates in a simi-
lar fashion. Adding a mix network to the Corda protocol would allow users to
opt-in to a privacy upgrade, at the cost of higher latencies and more exposure
to failed network nodes.

Zero knowledge proofs. The holy grail of privacy in decentralised database
systems is the use of zero knowledge proofs to convince a peer that a transaction
is valid, without revealing the contents of the transaction to them. Although
these techniques are not yet practical for execution of general purpose smart
contracts, enormous progress has been made in recent years and we have de-
signed our data model on the assumption that we will one day wish to migrate
to the use of zero knowledge succinct non-interactive arguments of knowledge 29

(‘zkSNARKs’). These algorithms allow for the calculation of a fixed-size math-
ematical proof that a program was correctly executed with a mix of public
and private inputs. Programs can be expressed either directly as a system of
low-degree multivariate polynomials encoding an algebraic constraint system,
or by execution on a simple simulated CPU (‘vnTinyRAM’) which is itself im-
plemented as a large pre-computed set of constraints. Because the program
is shared the combination of an agreed upon function (i.e. a smart contract)
along with private input data is sufficient to verify correctness, as long as the
prover’s program may recursively verify other proofs, i.e. the proofs of the
input transactions. The BCTV zkSNARK algorithms rely on recursive proof
composition for the execution of vnTinyRAM opcodes, so this is not a problem.
The most obvious integration with Corda would require tightly written assem-
bly language versions of common smart contracts (e.g. cash) to be written by

52

hand and aligned with the JVM versions. Less obvious but more powerful in-
tegrations would involve the addition of a vnTinyRAM backend to an ahead of
time JVM bytecode compiler, such as Graal30, or a direct translation of Graal’s
graph based intermediate representation into systems of constraints. Direct
translation of an SSA-form compiler IR to constraints would be best integrated
with recent research into ‘scalable probabilistically checkable proofs’31, and is
an open research problem.

16 Conclusion

We have presented Corda, a decentralised database designed for the financial
sector. It allows for a unified data set to be distributed amongst many mu-
tually distrusting nodes, with smart contracts running on the JVM providing
access control and schema definitions. A novel continuation-based persistence
framework assists developers with coordinating the flow of data across the net-
work. An identity management system ensures that parties always know who
they are trading with. Notaries ensure algorithmic agility with respect to dis-
tributed consensus systems, and the system operates without mining or a block
chain.

A standard type system is provided for the modelling of financial logic. The de-
sign considers security throughout: it supports the integration of secure signing
devices for transaction authorisation, secure enclaves for transaction process-
ing, composite keys for expressing complex authorisation policies, and is based
on binary protocols with length-prefixed buffers throughout for the systematic
avoidance of common buffer management exploits. Users may analyse ledger
data relevant to them by issuing ordinary SQL queries against mature database
engines, and may craft complex multi-party transactions with ease in program-
ming languages that are already familiar to them.

Finally, the platform defines standard ways to integrate the global ledger with fi-
nancial infrastructure like high performance markets and netting services.

17 Acknowledgements

The author would like to thank Richard Gendal Brown, James Carlyle, Shams
Asari, Rick Parker, Andras Slemmer, Ross Nicoll, Andrius Dagys, Matthew
Nesbit, Jose Coll, Katarzyna Streich, Clinton Alexander, Patrick Kuo, Richard
Green, Ian Grigg, Mark Oldfield and Roger Willis for their insights and con-
tributions to this design. We would also like to thank Sofus Mortesen for his
work on the universal contract DSL, and the numerous architects and subject
matter experts at financial institutions around the world who contributed their

53

knowledge, requirements and ideas. Thanks also to the authors of the many
frameworks, protocols and components we have built upon.

Finally, we would like to thank Satoshi Nakamoto. Without him none of it
would have been possible.

Bibliography

[1] Brown, Carlyle, Grigg, Hearn. Corda: An introduction. http://r3cev.

com/s/corda-introductory-whitepaper-final.pdf, 2016.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[3] Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://

bitcoin.org/bitcoin.pdf, 2008.

[4] Lindholm, Yellin, Bracha, & Buckley. The Java Virtual Machine Speci-
fication Java SE 8 Edition. https://docs.oracle.com/javase/specs/

jvms/se8/jvms8.pdf, 2015.

[5] Buterin et al. A Next-Generation Smart Contract and Decentral-
ized Application Platform. https://github.com/ethereum/wiki/wiki/

%5BEnglish%5D-White-Paper, 2014.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 21–21, Berkeley, CA,
USA, 2004. USENIX Association.

[7] OASIS. Advanced message queuing protocol (amqp) version 1.0, 2012.

[8] Mike Hearn. Bitcoin micropayment channels. https://bitcoinj.github.
io/working-with-micropayments, 2014.

[9] Mike Hearn, Gavin Andresen. Bitcoin payment protocol. https://github.
com/bitcoin/bips/blob/master/bip-0070.mediawiki, 2013.

[10] java.time.Instant documentation. https://docs.oracle.com/javase/8/

docs/api/java/time/Instant.html, 2014.

[11] PKWARE. Zip file format. https://pkware.cachefly.net/webdocs/

casestudies/APPNOTE.TXT, 1989.

[12] David Siegel. http://www.coindesk.com/

understanding-dao-hack-journalists/, 2016.

54

http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html
https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/

[13] Pieter Wiulle. Hierarchical deterministic wallets. https://github.com/

bitcoin/bips/blob/master/bip-0032.mediawiki, 2013.

[14] Stefan Thomas. Crypto-conditions. https://interledger.org/

five-bells-condition/spec.html, 2016.

[15] Diego Ongaro and John Ousterhout. In search of an understandable consen-
sus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, pages 305–320, Berkeley,
CA, USA, 2014. USENIX Association.

[16] Christopher Malmo. http://motherboard.vice.com/read/

bitcoin-is-unsustainable, 2015.

[17] Tim Swanson. http://tabbforum.com/opinions/

settlement-risks-involving-public-blockchains, 2016.

[18] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State machine
replication for the masses with bft-smart. In Proceedings of the 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’14, pages 355–362, Washington, DC, USA, 2014. IEEE
Computer Society.

[19] Hal Finney. Best practice for fast transaction acceptance - how high is the
risk? https://bitcointalk.org/index.php?topic=3441.msg48384#

msg48384.

[20] Jsr 338: Java persistence api. http://download.oracle.com/

otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.

pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d,
2013.

[21] Jsr 349: Bean validation constraints. https://www.jcp.org/en/jsr/

detail?id=349, 2013.

[22] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing con-
tracts: An adventure in financial engineering (functional pearl). SIGPLAN
Not., 35(9):280–292, September 2000.

[23] David J. Pearce and Lindsay Groves. Designing a verifying compiler:
Lessons learned from developing whiley. Science of Computer Program-
ming, 113, Part 2:191 – 220, 2015. Formal Techniques for Safety-Critical
Systems.

[24] Markus Voelter and Sascha Lisson. Supporting diverse notations in mps’
projectional editor. In Proceedings of the 2nd International Workshop
on The Globalization of Modeling Languages co-located with ACM/IEEE
17th International Conference on Model Driven Engineering Languages and
Systems, GEMOC@Models 2014, Valencia, - Spain, September 28, 2014.,
pages 7–16, 2014.

55

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://interledger.org/five-bells-condition/spec.html
https://interledger.org/five-bells-condition/spec.html
http://motherboard.vice.com/read/bitcoin-is-unsustainable
http://motherboard.vice.com/read/bitcoin-is-unsustainable
http://tabbforum.com/opinions/settlement-risks-involving-public-blockchains
http://tabbforum.com/opinions/settlement-risks-involving-public-blockchains
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf?AuthParam=1478095024_77b7362fd5bd185ebf8d2cd2a071a14d
https://www.jcp.org/en/jsr/detail?id=349
https://www.jcp.org/en/jsr/detail?id=349

[25] Bitcoin trezor device. https://bitcointrezor.com/, 2016.

[26] Reactivex. https://www.reactivex.io, 2016.

[27] C. Mitchell and Institution of Electrical Engineers. Trusted Computing.
Computing and Networks Series. Institution of Engineering and Technol-
ogy, 2005.

[28] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, February 1981.

[29] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von neumann architecture. In
23rd USENIX Security Symposium (USENIX Security 14), pages 781–796,
San Diego, CA, August 2014. USENIX Association.

[30] Graal research compiler. http://openjdk.java.net/projects/graal/,
2016.

[31] Eli Ben-Sasson, Iddo Ben-Tov, Alessandro Chiesa, Ariel Gabizon, Daniel
Genkin, Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Sil-
berstein, Eran Tromer, and Madars Virza. Computational integrity with
a public random string from quasi-linear pcps. Cryptology ePrint Archive,
Report 2016/646, 2016. http://eprint.iacr.org/2016/646.

56

https://bitcointrezor.com/
https://www.reactivex.io
http://openjdk.java.net/projects/graal/
http://eprint.iacr.org/2016/646

	Introduction
	Overview
	The peer to peer network
	Network overview
	Identity and the permissioning service
	The network map
	Message delivery
	Serialization, sessioning, deduplication and signing

	Flow framework
	Overview
	Data visibility and dependency resolution

	Data model
	Transaction structure
	Composite keys
	Timestamps
	Attachments and contract bytecodes
	Hard forks, specifications and dispute resolution
	Identity lookups
	Oracles and tear-offs
	Encumbrances
	Contract constraints
	Event scheduling

	Common financial constructs
	Assets
	Obligations
	Market infrastructure

	Notaries and consensus
	Comparison to Nakamoto block chains
	Algorithmic agility
	Validating and non-validating notaries
	Merging networks
	Guaranteed data distribution

	The vault
	Direct SQL access
	Key randomisation

	Domain specific languages
	Clauses
	Combinator libraries
	Formally verifiable languages
	Projectional editing

	Secure signing devices
	Background
	Confusion attacks
	Transaction summaries
	Identity substitution
	Multi-lingual support

	Client RPC and reactive collections
	Data distribution groups
	Deterministic JVM
	Scalability
	Privacy
	Conclusion
	Acknowledgements
	Bibliography

